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ABSTRACT

Molnár, Levente. Ph.D., Purdue University, May, 2006. Systematics of identified
particle production in pp, dAu and Au-Au collisions at RHIC energies. Major
Professor: Fuqiang Wang Professor.

Identified mid-rapidity particle spectra and freeze-out properties are presented

for 200 GeV pp, 200 GeV dAu and 62.4 GeV Au-Au collisions, measured in the

STAR-TPC. The STAR-TPC is a unique tool to investigate identified bulk particle

production from elementary pp to large multiplicity Au-Au collisions. Results are

contrasted to previous experiments to provide an overview of bulk properties in

heavy-ion collisions.

Evolution of the identified particle spectra (π±, K±, p and p) with charged par-

ticle multiplicity and event centrality is investigated in detail. Significant harden-

ing of the spectrum of heavy particles (kaons and protons/antiprotons) is found

in central Au-Au collisions. The average transverse momentum of kaons and pro-

tons/antiprotons in high multiplicity pp and central dAu collisions is larger than in

peripheral Au-Au collisions at the same energy. The average transverse momentum

in 62.4 GeV and 200 GeV Au-Au collisions seem to only depend on event multiplicity.

Particle production examined through particle-antiparticle ratios (π+/π−,

K+/K−, p/p) and unlike particle ratios (K−/π−, p/π−) show smooth evolution from

pp to dAu to Au-Au collisions. Significant net baryon is present in the central

collision zone in 62.4 GeV collisions and 200 GeV collisions. Strangeness production

increases with centrality in peripheral collisions and saturates in medium-central to

central collisions in heavy-ion collisions at 62.4 and 200 GeV, in contrast to lower

SPS and AGS energies.

Chemical freeze-out properties of the collision systems are obtained from parti-

cle ratios and the kinetic freeze-out properties from the shapes of particle spectra.
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Thermal model fits to the measured particle ratios yield a chemical freeze-out tem-

perature ∼ 155 MeV in 200 GeV pp, 200 GeV dAu and 62.4 GeV Au-Au collisions.

The extracted chemical freeze-out temperature is close to the critical phase tran-

sition temperature predicted by lattice QCD calculations. The kinetic freeze-out

temperature extracted from hydrodynamically motivated blast-wave models shows a

continuous drop from pp, dAu and peripheral to central Au-Au collisions, while the

transverse flow velocity increases from ∼ 0.2 in pp to ∼ 0.6 in central 200 GeV Au-

Au collisions. The kinetic freeze-out parameters in 62.4 GeV and 200 GeV Au-Au

collisions seem to be governed only by event multiplicity/centrality.

The kinetic freeze-out results are obtained from blast-wave fit to spectra data

treating all particles as primordial ones. However, resonance decays may modify

the spectral shapes significantly, and therefore may affect the extrapolated kinetic

freeze-out parameters. In order to study this possible effect the data are fitted

with the blast-wave model including resonances. It is found that the thus extracted

parameters are consistent with those obtained without including resonances. This is

because the resonance decays do not modify the spectral shapes significantly in the

measured pT region in STAR.
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1. Introduction

Complexity of Nature always fascinated mankind, who tried to interpret its envi-

ronment. Even in the 5th century BC, Democritos and Leucippos thought the world

was made of finite set of undividable elements: atoms.

Today, we have a more sophisticated and continuously expanding view about the

basic building blocks of Nature. In this thesis we focus on a small segment, namely

high energy heavy-ion collisions.

The aim of heavy-ion physics is to discover and study the expected new phase of

matter, the Quark Gluon Plasma, which is believed to exist in the early Universe, a

few µs after the Big Bang, where quarks and gluons could roam over large distances.

We hope to recreate the evolution of the early Universe in high energy heavy-ion

collisions. The large number of participating nucleons and the large energy density

could create a suitable environment to study this early phase of matter. However,

this system is far more complex than any elementary collisions. Signals to be mea-

sured come from a strongly interacting, hot and dense medium, therefore proper

characterization of this new phase requires combination of them.

Several experimental facilities have been built since the 1970s, the most recent

is the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory.

RHIC is capable of colliding counter rotating Au ion beams at a center of mass

energy of 200 GeV per nucleon pair. Hence in a central Au-Au collision, in the

collision zone, almost 40 TeV of energy is available to create a suitable environment

for the search of Quark Gluon Plasma.

Through decades, many observables have been suggested as possible signatures

of the expected new phase. In this thesis we do not attempt to cover every aspect

of the heavy-ion physics, but only concentrate on the bulk properties. During the

5 years of RHIC running, vast amount of data have been gathered and analyzed
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by the participating experiments. As the result, each experiment has summarized

its achievements and addressed the remaining tasks in the White papers [1–4]. The

vast amounts of data has allowed us to characterize the main bulk properties and

the field moves toward more refined and specific measurements. This thesis tries

to provide a summary of the bulk properties of collisions measured at RHIC in the

STAR detector.
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2. QCD and QGP in high energy collisions

2.1 QCD in vacuum

Elementary particles are divided into two classes: fermions (the building blocks:

quarks, leptons) and bosons (the glue: gluons). In the search for the elementary

constituents of matter, the LEP experimental results point to the existence of three

generations of the basic building blocks, each with two quarks (u,d - c,b - t,b) and

their antiquarks. There are two leptons corresponding to a generation (e± - µ± -

τ±) and their neutrinos (νe, νe, νµ, νµ, ντ , ντ ). Experiments aimed to search for

bare quarks all have failed. Quarks always appear bounded in hadrons: in baryons

(qqq) or in mesons (qq). Exploration of the baryon spectrum and the prediction

of new particles and their experimental discovery formed a solid foundation to the

constituent quark model [5]. The existing hadron spectrum(as known in ∼ 1960)

could be described by conservation laws of the quantum numbers: baryon number,

isospin, strangeness number and hypercharge, electric charge and spin.

Discovery of ∆++(uuu), ∆−(ddd) and Ω−(sss) particles required the introduction

of a new quantum number to avoid the contradiction to the Pauli Exclusion Principle

within the quark model [5]. The proposed solution assigns new quantum numbers to

the quarks, the colors suggested by Greenberg [6] and Gell-Mann [7, 8]. In order to

satisfy the Pauli Exclusion Principle, three color states are needed (called red, green

and blue), but the hadrons remain colorless objects.

Further development of the quark model based on gauge invariance lead to Quan-

tum Chromo Dynamics (QCD), a field theory, which describes the strong interac-

tions between colored quarks and the force carriers: (eight colored) gluons. The

color charge is confined to the hadrons, according to the confinement hypothesis
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which can be described by the potential obtained from lattice QCD calculations for

heavy quarks:

VQQ ∼ 4

3

αS(r)

r
+ σr (2.1)

where αS(r) is the strong coupling constant, σ is the QCD string tension and r is

the distance of the color charges. As can be seen from Eq. 2.1, the potential at small

distances is Coulomb like, but increases linearly at large distances. The confinement

hypothesis provides a natural explanation of the observed color neutral hadrons and

the short range of the strong interaction.

The gluon fields are non-Abelien, which leads to self interaction between the glu-

ons and to the change in the effective coupling constant of the strong interaction.

Figure 2.1 shows the change in αS as a function of momentum transfer. At large

momentum transfer the effective coupling constant becomes small and the probed

quarks appear to be free objects, as measured in deep inelastic scattering experi-

ments. The experimental results in this region are well described by perturbative

QCD (pQCD). However, in the region where the momentum transfer (Q) is small

(soft physics region), perturbative calculations are not applicable. The observed

behavior of the effective coupling constant can be described by the following expres-

sion:

αS(Q2) =
4π

(11 − 2NF/3)ln(−Q2/Λ0)
(2.2)

where NF represents the number of flavors with mass below |Q2|
1
2 and Λ0 is the

scaling parameter ∼ 200 MeV. Large momentum transfer corresponds to a small

interaction distance; the observed decrease of the effective coupling constant with

increasing momentum transfer or decreasing distance is called asymptotic freedom.

2.2 QCD in colored medium

In high energy heavy-ion collisions the number of participating nucleons/quarks

is large and the behavior of αS is modified compared to the in-vacuum case (as de-

scribed above). In high energy heavy-ion collisions the average momentum transfer is
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Figure 2.1. Summary of the αS measurements. Figure is taken from [9].

in the order of Λ0 limit, therefore the effective coupling constant should be described

as a function of the temperature:

αS(Q, T ) =
g2

4π(1 − Π(Q, T )/Q2)
(2.3)

where the term: 1/(4π(1−Π(Q, T )/Q2)) is the QCD analogue of the Debye screening

of a test charge in electrolyte, but includes the effect of the colored medium [10]. αS

exhibits the same behavior with increasing temperature as with increasing momen-

tum transfer. Therefore, one can summarize the expectations from QCD of quark

confinement: at large momentum transfers (small distances) or at large temperatures

the quarks appear to be free, that is, the quarks are deconfined.
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This deconfined phase of quarks and gluons is called Quark Gluon Plasma (QGP).

A more precise definition will be given in the next chapter.

The early theoretical expectations predicted that the phase transition simulta-

neously occurs with chiral symmetry restoration. Due to the confining nature of

vacuum the quark mass is generated dynamically inside the hadrons. The so called

quark condensate, which can be regarded as an order parameter has a finite value in

vacuum:
〈

ψψ
〉

≈ -235(MeV )3 [10] and is expected to disappear in the QGP phase.

Figure 2.2 shows the phases of QCD matter in the temperature (T) - baryon

chemical potential (µB) plane. Letter H denotes the phase of the normal hadronic
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matter. Letter M denotes the place of the nucleus in the QCD phase diagram.

Black lines represent the phase boundary between hadron gas and the Quark Gluon

Plasma at small baryon chemical potential and between hadron gas and Color Super

Conductor (CSC) phase at large baryon chemical potential. Letter E denotes the

critical end point from Lattice QCD calculations for first order phase transition.

Furthermore the accessible regions of the RHIC and SPS experiments are also shown.

In the case of RHIC the accessible phase space is well above the phase transition

boundary, possibly reaching another newly suggested reign of bound states [12].

2.3 Lattice QCD

Experimental probe of the QCD phase map is limited, and pQCD calculations are

limited to interactions involving large momentum transfers. However, the average

momentum transfer in high energy heavy-ion collisions is small. Numerical simu-

lation methods of QCD on the lattice are developed to calculate the analytically
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unaccessible region of QCD. A thorough description of lattice QCD can be found

in [13]. Lattice QCD calculates Feynman path integrals representing the expecta-

tion values of the quantum field theory operators. Integrals are calculated over all
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gluon and quark fields at all lattice space - time points. After the calculations are

performed, the extracted quantities are extrapolated to the continuum limit (lattice

spacing → 0).
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The first calculations are performed with pure gluon fields at vanishing baryon

chemical potential. Introduction of the fermion fields on the lattice result a doubling

of flavors. On the 4D lattice (3 space, 1 time) each quark specie appears in 16 copies.

Different techniques are developed to overcome the doubling problem. The first

solution is from Wilson [14], where the mass of the doublets is inversely proportional

to the lattice spacing, hence they disappear at the continuum limit. However, the

non zero mass introduces chiral symmetry breaking in the action. To avoid the

chiral symmetry breaking, Kogut-Sussking has introduced the staggered fermion

action [15–17]. A recent development is the domain wall approach [18], where the

doubling problem is solved through the introduction of a 5th dimension. Upon

interpreting the lattice QCD results the above approximations should be kept in

mind to understand the limitation of the calculations/predictions.

Development of the lattice formulation of thermodynamics has lead to several

interesting results. Investigation of QCD at non-zero baryon chemical potentials

and non-zero temperatures suggest phase transition from the hadronic phase to the

Quark Gluon Plasma phase when sufficiently high energy density and temperature

is reached, as shown in Fig. 2.3. The ǫ/T 4 is proportional to the number of degrees

of freedom. The arrow indicates the Stefan-Boltzmann limit:

ǫ = g
π2

30
T 4 (2.4)

where g is the number of degrees of freedom. For a hadron gas, the basic number of

degrees of freedom are given by the three pion states (π+, π−, π0):

ǫHG = 3
π2

30
T 4. (2.5)

In the QGP phase the relative number of degrees of freedom are the quarks and glu-

ons. From the estimate of ideal relativistic boson (gluons) and femion gas (quarks),

the following relation can be written for the energy density:

ǫg+q =

∫

d3p

(2π)3

p

ep/T − 1
+

∫

d3p

(2π)3

p

ep/T + 1
(2.6)
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ǫg+q =
4πT 4

(2π)3

∫

x3dx

ex − 1
+

4πT 4

(2π)3

∫

x3dx

ex + 1
(2.7)

ǫg+q =
π2

30
T 4 +

7

8

π2

30
T 4. (2.8)

The energy density can be written as:

ǫQGP = (2spin×8colors)
π2

30
T 4+(2quark−antiquark×2spin×3colors×nflavors)

7

8

π2

30
T 4 (2.9)

ǫQGP = (16 +
21

2
nflavor)

π2

30
T 4. (2.10)

From these naive estimates the number of degrees of freedom is significantly increased

in the QGP phase with respect to the hadron gas phase. Figure 2.3 shows significant

increase in the number of degrees of freedom around the critical temperature of the

phase transition. The critical temperature depends on the number of flavors and the

mass of the quarks. The black curve shows the classical calculation for pure gluon

fields. The blue curve shows the expectation for three light quarks, and the red curve

shows the two light quarks calculation. In a more realistic calculation shown in light

blue, two light quarks (u,d) and a heavy quark (s) are considered. This later case

might represent the case at RHIC, where the sharp transition slightly flattens out.

Although the critical temperature changes in the above cases (173 ± 8 MeV for two

flavors and 154 ± 8 MeV for three flavors), the critical energy density is found to be

in the range: ǫc ∼ 0.5 - 1.0 GeV/fm3 [19].

In Fig. 2.4 the Stefan-Boltzmann scaled pressure of hadrons is shown as a function

of the scaled temperature (left panel) and the pressure of hadrons in units of T 4 as

a function of the temperature (right panel). The evolutions of the pressures (left

panel) are similar and they do not reach the Stefan-Boltzmann limit. Lattice QCD

calculations show deviation from the ideal Stefan-Boltzmann gas.

As we mentioned above, QCD predicts the confinement of quarks which can be

described by the potential between two heavy quarks as shown in Eq. 2.1. This

effective potential can be calculated on the lattice as well [13].

Figure 2.5 (left panel) shows the temperature dependence of the heavy quark

free energy in three flavor QCD with a quark mass 0.1 GeV. The calculation is
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performed for static quarks. The three lines represent the Cornell type potential

(V(r)/
√
σ=-α/r

√
σ+r

√
σ, α=0.25 ± 0.05) [13] in the unit of the square root of the

string tension, which coincides with the lattice calculation for temperature T ≤ Tc

and r ≈ 1.5/
√
σ ≈ 0.3 fm. The flat region at T < Tc suggests that the two heavy

quarks separate into two nearly non-interacting heavy-light mesons, such as D and B.

The decrease of the magnitude in the flat region shows that the effective light quark

mass decreases due to chiral symmetry restoration. Furthermore, Fig. 2.5 also shows

∆F , the difference in the free energy of a quark-antiquark pair at infinite separation

and the free energy of the quark-antiquark pair at distance rq=
√

α/σ. Around the

critical temperature the probability of the formation/existence of a heavy bound

state is small. The distance and temperature dependence of the free energy will lead

to the enhancement of the D meson (bound state of a charm and an up or down

quark) with respect to the J/ψ (cc) which can be tested experimentally.
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3. High energy heavy-ion collisions and QGP

Ultra-relativistic heavy-ion collisions provide possible means to explore the bulk

properties of QCD in a volume several times larger than the initial colliding nuclei.

These collisions might lead to a high enough energy density for the formation of the

Quark Gluon Plasma (QGP). Theoretical expectations and interpretations of the

QGP have evolved over two decades. A working definition of QGP is as follows [1]:

A (locally) thermally equilibrated state of matter in which quarks and gluons are de-

confined from hadrons, so that color degrees of freedom become manifest over nuclear,

rather than merely nucleonic, volumes.

3.1 Space-time evolution of high energy heavy-ion collisions

The space time evolution of the heavy-ion collision is summarized in Fig. 3.1. It is

a hard task for theorists (and maybe too much to ask) to provide a coherent picture

of all stages of a heavy-ion collision within the same theoretical framework, although

the field is rapidly evolving. To build a general picture of heavy-ion collisions, we

select narrow topics from the initial collision stage to the final free-streaming of the

particles. We try to address gluon saturation, themalization, freeze-out properties

and hadron production through experimental measurements.

A general view of heavy-ion collisions is the following. The two incoming highly

Lorentz contracted nuclei approach each other at the interaction point (z = 0) with

speed near the speed of light (c). A common understanding of the initial collisions

that they are dominated by gluons, hence the number of partons is significantly larger

than the constituent quarks of the two nuclei. This initial state is often referred as

the Color Glass Condensate. The temperature from the initial stage is increasing

and the Color Glass Condensate melts above the critical temperature of the phase
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Figure 3.1. Illustration of the space time evolution of a heavy-ion
collision with QGP formation.

 [GeV/c]Tp
1 2 3 4 5 6

d+
A

u
R

0

0.5

1

1.5

2

 = 3.2η -h

 [GeV/c]Tp
1 2 3 4 5 6

d+
A

u
R

0

0.5

1

1.5

2

 = 2.2η -h

 [GeV/c]Tp
1 2 3 4 5 6

d+
A

u
R

0

0.5

1

1.5

2

 = 1η
2

-+h+h

 [GeV/c]Tp
1 2 3 4 5 6

d+
A

u
R

0

0.5

1

1.5

2

 = 0η
2

-+h+h

Figure 3.2. Nuclear modification factor of charged hadrons at differ-
ent pseudorapidities measured in 200 GeV dAu collisions. Figure is
taken from [29].

transition to the Quark Gluon Plasma. The estimated time from the initial collisions

to the formation of the QGP is short, less than: ∼ 1 fm/c. This is important, since

without rapid thermalization, one cannot treat the system within thermodynamical

description.
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Once the system evolves to the QGP phase, the high energy density and the pres-

sure gradient drive the system to expansion and subsequent cooling. This regime

can be described by relativistic hydrodynamics. As the temperature drops and the

system becomes dilute, the QGP phase is not longer sustainable, the system freezes

out, and the hydrodynamical approach breaks down. When inelastic collisions cease

in the system, the chemical composition of the final state will not change. It is

referred to as chemical freeze-out and it is characterized by the chemical freeze-out

temperature (Tch) and the baryon and strangeness chemical potentials (µB, µS).

Some models introduce an ad-hoc strangeness suppression factor (γS) to account for

the non-fully equilibrated system. Chemical freeze-out is likely to be a continuous

partN
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Figure 3.3. RAA(pT ) is shown for direct photons (dots) and π0 (open
circles) for central Au-Au collisions at 200 GeV. Figure is taken
from [34].

transition rather than a sudden freeze-out. Therefore, between the critical temper-

ature (Tc) and the chemical freeze-out one would expect the existence of the mixed

phase of QGP and hadron gas. Further expansion leads to a more dilute stage; the

elastic collisions eventually cease. At this stage the kinetic properties of the sys-

tem are frozen and it is called kinetic freeze-out. It is characterized by the kinetic

freeze-out temperature (Tkin, denoted by Tfo in Fig. 3.1) and the average transverse
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flow velocity (β). Hereafter, the particles free stream toward the detector. Below we

address recent measurements probing different stages of the collision.

3.2 Saturation before collision

Theoretical models suggest the saturation of gluon densities in the two highly

Lorentz contracted (γ ≈ 100) nuclei receding toward the interaction point. Due to

the Lorentz contraction the colored gluon wave functions start to overlap and the

collision itself can be pictured as two highly colored rose-windows passing through

each other. This hypothetical initial stage of the heavy-ion collision is called the

Color Glass Condensate [21–25].

HERA deep inelastic scattering results indicate [26] a rise in the gluon distribution

function (xg(x,Q2)) at small momentum fractions, where x is the Bjorken x, and Q2

is the 4 momentum transfer. At momentum transfers of a few GeV scale the gluon

distribution function seems to saturate and gluon fusion (g + g → g) and gluon

splitting (g → g + g) becomes equally probable. The latest developments [21–25]

indicate that the saturation is achieved at higher x (at a fixed Q2) in heavy-ion

collisions at RHIC compared to protons at HERA. At RHIC the available kinematic

region of x is large and the average Q is small, but it still can lead to a rise in the

number of low x gluons. The total cross section rises more slowly than the number

of gluons per unit area per unit rapidity, hence the areal density of partons involved

in the collision may increase above unity [27,28].

The applicability of the CGC framework is represented by the saturation scale

(Q2
S(x,A)), which depends on the Bjorken x and the mass number (A) of the nuclei.

The saturation is enhanced by ∼ A
1
3 in the case of low x and moderate Q2 in a

nucleus with respect to a proton. The proton should be probed at two orders of

magnitude lower x to achieve the same enhancement. Hence, the target nucleus sees

an incoming nucleus with a much smaller transverse size compared to the nuclear

diameter and longer longitudinal coherence length. The geometrical picture of the
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collision is similar to the constituent quark based classical geometrical model of

heavy-ion collisions, but gluons see a coherent cylinder of gluons in the receding
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nucleus. The BRAHMS experiment has measured the nuclear modification factor in

dAu collisions at large rapidities, which is defined as:

Rd+Au =
1

Ncoll

dN/dη(dAu)

dN/dη(pp)
. (3.1)

The observed suppression of the measured nuclear modification factor in dAu colli-

sions has been qualitatively predicted within the CGC framework, including quantum

evolution, and is interpreted as the appearance of the Color Glass Condensate. The

formation of the QGP may start with the CGC which is not fully understood yet

and should be tested in various collisions (ep, eA, pA, AA) at RHIC and LHC ener-

gies. In the working definition of the QGP we require a thermalized system and the

CGC seems to provide a natural explanation for the fast thermalization expected at

RHIC [21].

3.3 Early probes of the collision and the medium

After the initial collisions the QGP is expected to form. The colored medium

particle production is expected to be different from vacuum production. Below we

discuss some of the observables in the focus of the experimental quark gluon plasma

search.

3.3.1 Direct photons

Probing the early phase of the collision and the QGP is a difficult task. Direct

photons provide a useful tool to measure the very early stage of the collisions. They

interact only through the electro-magnetic channel, therefore their mean free path

is larger than the expected size of the system. Direct photons are created in the

thermally equilibrated quark gluon plasma through gluonic channels: q+ q → γ+ g,

g + q → γ + q, g + q → γ + q.

Besides QGP gluons, there are other significantly contributing photon sources

through the evolution of the collision: eg. photons from hard scatterings in the
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QGP phase or photons from particle decay in the hardonic phase. By filtering out

the photons from these background processes, the measured direct photons reflect the

thermodynamics of quarks and gluons in the system before hardonization. Therefore

the transverse momentum spectrum of direct photons should exhibit enhancement

with respect to the photon spectrum measured in the hadronic phase [33]. The

PHENIX experiment at RHIC has measured the spectra of direct photons in 200

GeV Au+Au collisions. A clear enhancement is observed above pT > 3 GeV/c, and

the data is well described by pQCD calculations [34]. As shown in Fig. 3.3, direct

photons are not suppressed in central Au+Au collisions at 200 GeV, but π0s and

charged hadrons are (Fig. 3.4 (left panel)). These measurements suggest that the

suppression of charged hadrons and π0s is indeed a final state effect due to energy loss

and the nuclear modifications of quark and gluon distribution functions are small.
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3.3.2 Charmonium suppression

The evolution of the effective free energy of static heavy quarks with distance

and temperature calculated in lattice QCD predicts the enhancement of open charm

(eg. D or B meson) with respect to charmonium (J/ψ) production. Charmonium

suppression is predicted to be a signal of the QGP formation [30]. The corner-
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stone of the QGP search at CERN was the J/Ψ measurement in central Pb+Pb

collisions [31]. The observed J/Ψ cross-section is suppressed by a factor of 2 with

respect to the Drell-Yan cross-section from peripheral to central collisions. Theoret-

ical developments revealed that the suppression can be explained by other nuclear

effects as well.

3.3.3 Jet quenching

Hard scattering of partons is expected to occur early in nuclear collisions. The

energetic partons from hard scatterings, traversing the colored, medium are expected

to lose energy via gluon bremsstrahlung, which depends on the color charge density

of the medium. Direct observation of jets formed by energetic parton fragmentation

is not possible in heavy-ion collisions. But the measurements of spectra and two

particle azimuthal correlation of the large transverse momentum particles are pos-

sible. Figure 3.4 (left panel) shows the nuclear modification factor (blue symbols)

measured in central Au+Au and dAu collisions at 200 GeV. The large transverse

momentum spectrum in central Au+Au collisions is suppressed compared to pp colli-

sions. (In the absence of any nuclear effect the ratio of the spectra is situated around

1.) Later, the dAu measurement was performed as a control experiment. On the

same panel the central and the minimum bias dAu nuclear modification factors are

plotted. Suppression is not observed at large transverse momenta. Therefore, one

concludes that partons from hard scattering lose energy in the medium created in

central Au-Au collisions, a final state effect (to be distinguished from the expected

gluon saturation, which is an initial state effect). Figure 3.4 (right panel) also shows

the two particle azimuthal correlation. On the top panel the pp and central and min-

imum bias dAu collisions are shown. As known from high energy physics, particles

produced in hard scatterings (appear as jets) are back to back in azimuth. Selecting

the largest transverse momentum particle (trigger particle) and calculating the dif-

ference in azimuth for each track in the event the two particle azimuthal distribution
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is expected to peak at 0o (in the direction of the trigger particle) and at 180o. This

is clearly shown in pp and dAu collisions. In the bottom panel the correlation from

central Au+Au is added. The peak around the trigger particle direction is clear,

however the peak expected at 180o is missing. Partons from hard scattering trav-

eling through the medium have lost their energy and their memory of the common

origin.

3.3.4 Soft - Hard correlations

High transverse momentum particles are expected to lose significant energy tra-

versing through the medium created in high energy heavy-ion collisions. In the pre-

vious section, it was shown that the high pT suppression is a final state effect. Energy

from the high pT particles should be redistributed in the surrounding medium, which

mainly constitutes soft particles (pT < 2 GeV/c). It was also shown that statistical

reconstruction of jets is possible in heavy-ion collisions. For technical details and

definitions we refer to [46]. Figure 3.5 shows the ∆φ and ∆η distributions. The ∆φ

distribution clearly shows jet like correlations in pp (top left panel) and Au-Au (bot-

tom left panel) collisions, although it is strongly suppressed in the higher associated

particle range. The away side of the ∆φ distribution is significantly wider in Au-Au

than in pp collisions. Transverse momentum distributions of the near and away side

∆φ distributions are calculated. Furthermore, the average transverse momenta are

extracted as shown in Fig. 3.6. The black curve represents the average transverse

momenta of the inclusive particles. The average transverse momenta from the away

side jet and from the inclusive particles converge with increasing centrality. This

might indicate the equilibration of the away side jet hadrons and the particles from

the medium.
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3.4 Bulk properties

3.4.1 Elliptic flow

In a non central heavy-ion collision the collision zone has an anisotropic spatial

distribution, which is often referred to as the almond shape. This spatial anisotropy is

transformed to momentum space anisotropy by rescattering among the constituents

of the system. This can be observed in the final azimuthal distribution of hadrons.

The invariant cross section can be decomposed into a Fourier series:

E
d3N

d3p
=

1

2π

d3N

pTdpTdy

(

1 +
∞
∑

n=1

2vn cos(n [φ− Ψr])

)

(3.2)

where Ψr is the reaction plane angle. The reaction plane is spanned by the beam

direction and the direction of the impact parameter. From the Fourier decom-

position the component v2 is called elliptic flow and can be expressed as v2 =

〈(px/pT )2 − (py/pT )2〉 for particle number distribution.

The elliptic flow is expected to develop early in the collision and survives the

hadronization, hence the hadron v2 measurements carry information from the par-

tonic and hadronic stage of the collision [43]. Recently STAR has measured the

elliptic flow of multi-strange baryons as shown in Fig. 3.7. Measurements of their

elliptic flow presumably give information on the early stage of the collision, since

they are expected to be less sensitive to hadronic re-scattering due to their small

hadronic cross-section [44].

Each particle follows a distinct trend as a function of transverse momentum. Bulk

particles are well described by hydrodynamical calculations, but the pion v2 is under-

estimated. The v2 for each particle saturates at transverse momenta (pT ≥ 2.0− 2.5

GeV/c). Ideal non viscous hydrodynamical calculations show a monotonically in-

creasing trend even at larger transverse momenta.

Figure 3.7 (top panel) also shows results for bulk (π,K, p) and for singly strange

particles (K0
S,Λ), and hydrodynamic model calculations [47]. The measured v2 of

multi-strange particles is non zero and similar in magnitude to the singly strange and
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bulk particles. This implies that the multi-strange particles acquired significant flow

in the partonic stage of the collision, hence partonic collectivity is present. Figure 3.7

(bottom panel) also reveals another important finding, namely the constituent quark

scaling. As can be seen in the top panel v2 of mesons and baryons clearly follow a

distinct trend above pT > 2 GeV/c, but the constituent quarks scaled values for

mesons and baryons fall on the same curve within errors. This implies that the

partonic degrees of freedom are the constituent quarks. Furthermore, the s quark,

which is heavy, flows similarly to u or d.

3.4.2 Statistical model description

In relativistic heavy-ion collisions the number of produced particles is ∼ 5000.

The large number of particles and the large system size compared to the interaction

length allows macroscopical treatment of the system created in heavy-ion collisions.

Investigation of hadron abundances provides an indirect way to study the degree of

thermalization. The formation of the QGP and its subsequent thermalization from

a near locally thermal equilibrium leads the constituents of the system to chemical

equilibrium [35]. As a consequence of the equilibration the saturation of the strange

particles is expected as well. Particle yields measured by identified particle spectra

provide the input for the thermal analysis.

We follow the statistical model approach as can be found in [87], based on the

grand canonical description of the partition function. The system is assumed to be

in local chemical and thermal equilibrium. The resulting particle density is given by:

ni =
gi

2π2
γS

∫ ∞

0

p2dp

e(Ei−µi)/T ± 1
(3.3)

where gi is the spin degeneracy, p is the total momentum, E is the total energy, and

µi is the chemical potential which can be written as:

µi = µBBi − µSSi − µII
3
i (3.4)
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including the baryon number, the strangeness number, and the third component of

the isospin. The γS is the strangeness suppression factor which was introduced ad

hoc, to describe strange particle yields [35]. The observed number of strange particles

in proton-proton and elementary e+ + e− collisions were less than it was expected

from the statistical approach. One possible explanation is that the strange quark

possesses a mass heavier than the up and down quarks, therefore its production is

not energetically favored.

The model contains four free parameters: the temperature (T), the baryo-chemical

potential µB, the strangeness chemical potential µS and the strangeness suppression

factor: γS. The relevant conservation laws are:

V
∑

µBBi = Z +N (3.5)

V
∑

µSSi = 0 (3.6)

V
∑

niI
3
i =

Z −N

2
(3.7)

The statistical model has been successfully applied to the available data sets from

various heavy-ion collisions. Results from STAR will be presented in the Result

section.

Statistical models are successful to describe heavy-ion data, however, we should

mention the caveats as well. Furthermore, statistical models with canonical descrip-

tion are able to reproduce hadron abundances in elementary collisions as well, where

thermal equilibrium is not expected due to the small system size and the small

number of produced particles.

3.5 Collectivity and hydrodynamics

If the system created in heavy-ion collisions thermalizes rapidly due to the strong

initial interactions between its constituents and preserves this thermalized state over

a significant period of the evolution time, the system can be treated as a relativistic

fluid undergoing collective, hydrodynamical flow [43]. Hydrodynamical models have
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been applied to heavy-ion collisions at BEVALAC, AGS, SPS and RHIC and they

achieved impressive success at RHIC energies. Applicability of these models provide

the indirect evidence for local thermal equilibrium.

Hydrodynamics provide a sensitive tool to study the Equation of State. Since

these hydrodynamical models cannot be applied to matter out of local thermal equi-

librium, models need initial and final boundary conditions. The initial conditions

for hydrodynamical models can be calculated from the CGC approach, or various

transport codes such as MPC [38] or AMPT [39], kinetically treating the period from

the initial stage to thermal equilibrium.

Formalism for ideal relativistic fluid in local kinetic equilibrium is as follows. The

equations of motion for a relativistic fluid element come from the local conservation

of energy and conserved charges:

∂µT
µν = 0 (3.8)

and

∂µj
µ
i = 0 (3.9)

where T µν is the energy momentum tensor and jµ
i are the currents of the conserved

charges (i = 1, 2, ..., n). The energy momentum tensor can be written as:

T µν = (ǫ+ p)uµuν − pgµν (3.10)

where ǫ is the energy density, p is the pressure, and gµν is the metric tensor. The

conserved current can be written as:

jµ
i = niu

µ (3.11)

where ni is the number density of charge i and uµ is the four-velocity of the flow

field.

The Equation of State (EoS) is also needed, which connects the energy density,

pressure, and number densities: p = p(ǫ, n1, n2, ..., nn). Applying this formalism to

measured data, the input EoS can be tested. Although several further assumptions
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are made to derive a simple applicable model. Calculations including hydrodynam-

ical treatment, usually assume cylindrical symmetry due to the geometry of the

collision. Calculation in the longitudinal direction can be simplified as well, assum-

ing Bjorken scaling [40]. In the Bjorken picture the longitudinal flow is assumed to

scale with the z distance: vz = z/t. This assumption leads to boost invariance of the

system. This assumption based on the measured particle yields at RHIC, work well

in the mid-rapidity region: |y| < 1.5. However the BRHAMS experiment showed

that particle yields have nearly Gaussian distribution in a wider rapidity region:

|y| < 4. Assumption of the Bjorken scenario limits the sensitivity of the models to

the transverse activity of the colliding system.

The high energy density and pressure at the beginning of the hydrodynamical

evolution leads to rapid expansion. The average mean free path increases and the

density of the system decreases. When the system reaches a dilute state the hy-

drodynamical evolution stops (the elastic collisions cease) and the kinetic freeze-out

happens. The kinetic freeze-out is driven by the expansion rate of the system rather

than the size of the system [41,43].

The freeze-out is customarily described by the Cooper-Frye formula assuming

a sudden break up from the perfect local thermal equilibrium to free streaming

particles. If the break up criteria for the given fluid element is satisfied the final

spectrum for particle i can be calculated:

E
dNi

d3p
=

1

2π

dNi

pTdpT

=
gi

(2π)3

∫

Σ

fi(p · u(x), x)p · d3σ(x) (3.12)

where d3σ(x) is the normal vector of the freeze-out surface Σ(x). The phase space

distribution (f) is calculated just before freeze-out at local equilibrium:

fi(E, x) =
1

e
E−µi(x)

T (x) ± 1

(3.13)

The Cooper-Frye formula has two important aspects, which have to be mentioned.

Particles with different momenta freeze-out at the same time from the same fluid

element, however high momentum particles require larger number of scatterings to
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reach thermal equilibrium. Recent developments try to address the whole momentum

spectrum of particles at freeze-out. One should note, that some part of the initially

produced partons does not participate in the collective hydrodynamical motion of

the system. Without proper treatment of the fluid dynamics, one can assume a

freeze-out surface and find a solution for that particular choice. In this case the

d3σ(x) can be negative, which is the flux of particles entering the hydrodynamical

phase from the vacuum. Simplified treatment of this negative contribution has lead

to problems with energy-momentum conservation. But, the contribution from this

negative current is usually negligible.

We would like to emphasis once more, that the Cooper-Frye formula describes

a sudden break up of the thermalized system, while experimental measurements

suggest time-temperature ordered freeze-out for different particles [1].

At mid-rapidity, in near baryon free collisions at RHIC, the surface of constant

temperature, energy and particle density is a good approximation.

3.5.1 Contribution to heavy-ion physics

Thermalization has a key role in heavy-ion physics. Since experimental measure-

ments take place after the phase transition in the hadronic stage, direct evidence of

thermalization cannot be addressed. However, the excellent agreement between mea-

sured data and chemical equilibrium and kinetic freeze-out models serves as a strong

hint for thermalization. This thesis completes the currently available systematic

measurements of freeze-out properties, because the analysis is carried out with the

same STAR detector setup as for 130 and 200 GeV Au-Au collisions. Moreover, the

62.4 GeV measurement is situated between the previously available highest energy

at SPS and RHIC data, and provides further constraint for models describing the

evolution of bulk quantities and freeze-out properties with collision energy. From the

available low momentum measurements, in light of the AGS and SPS measurements,

and the results from RHIC, particle production is statistical and follows the expec-
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tations from a source in local thermal and chemical equilibrium. Dynamics of the

collision system are governed by hydrodynamical principles. Freeze-out properties

evolve smoothly with collision energy in the RHIC regime. Larger collision energy

creates a larger system, while particle production is predominantly determined by

the net baryon content of the collision zone.
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4. The RHIC facility and the STAR detector

4.1 The RHIC facility

The Relativistic Heavy Ion Collider (RHIC) opened a new era in the exploration

of heavy-ion collisions. The machine is dedicated to the search of the theoretically

predicted Quark Gluon Plasma. The RHIC heavy-ion physics goals were comple-

mented by the installation of the Siberian Snakes, which allow the study of the spin

structure of nucleons in a wide range of collision energies. Up to date RHIC provides

the best environment to the search of QGP and characterization of its properties;

colliding two counter rotating Au ion beams at a center of mass energy per nucleon

pair
√
sNN = 200 GeV. The total kinetic energy available in the collision zone is ∼

40 TeV. By design RHIC is capable of colliding several ion species from light ions

to heavy ions such as Au, as well as protons. The magnet system was optimized for

Au-Au collisions at 100 GeV/u, but the charge to mass ratio allows kinetic energies

up to ∼ 125 GeV/u for lighter ions and ∼ 250 GeV for protons. Run 5 gives a good

example of the versatile utilization of RHIC, when Cu-Cu collisions took place at

62.4 GeV and 200 GeV and proton-proton collisions at 400 GeV.

The acceleration of the Au ions takes places in several steps to achieve the 100

GeV/u. Fig. 4.1 shows the RHIC complex and the important accelerator facilities.

The Au ions are initially accelerated in the tandem Van de Graaff in the charge

state -1e to 15 MeV. Passing through a stripping foil in the high voltage terminal,

the charge state of the accelerated ions is further increased. The achievable charge

state depends on the ion specie; in case of Au the charge state becomes +12e. Upon

exiting the Van de Graaffs the Au ions are stripped further to +32e and injected

to the Booster synchrotron which accelerates them to 95 MeV/u. In the Booster

to AGS transfer line the ions are stripped to charge state +77e leaving only the
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Figure 4.1. Perspective view of the RHIC complex in BNL. The four
experiments are also indicated at the interaction points. Figure is
taken from [48].

K shell electrons. In the AGS the ions are accelerated to full AGS energy of 10.8

GeV/u. The last stripping foil is located in the AGS to RHIC transfer line, where the

remaining K shell electrons are removed and the ions are fully stripped to +79e. The

Au ions are accelerated further in RHIC to the maximum energy to 100 GeV/u. The

nominal beam life-time is 10 hours. The counter rotating beams can be extracted

to collide at six interaction points. Currently four of them are utilized, as shown in

Fig. 4.1, [48].
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Figure 4.2. Acceleration scenario for Au ions. Figure is taken from [48].

4.2 The STAR detector

The STAR - Solenoidal Tracker At RHIC - detector is primarily designed to mea-

sure hadronic observables in heavy-ion collisions but is able to cope with the broad

physics program of RHIC. STAR is a large solenoidal detector system covering 2π

in azimuth and 3.6 units in pseudo-rapidity (-1.8 ≤ η ≤ 1.8). Its structure is shown

in Fig. 4.3 representing the Year 2001 configuration. The whole detector is enclosed

in a solenoidal magnet that provides a uniform magnetic field parallel to the beam

direction as shown in Fig. 4.7. As of 2005, the detector capabilities are significantly

extended compared to the Year 2001 setup. The Ring Imaging Cherenkov (RICH)

detector was removed and the Barrel Electromagnetic Calorimeter (BEMC) [49] was

installed. Next to the pole tips the Endcap EMCs [50] were installed to gain nearly

4π coverage of calorimetry together with the BEMC. The Time Of Flight (ToF)

detector patch covers -1 ≤ η ≤0 and ∆φ = 0.04π and will be expanded to match the

full TPC coverage. The current setup of the STAR detector allows measurements

from hadronic to leptonic observables in a broad range. In the next subsections we

describe those subsystems, that are relevant to the analysis presented in this thesis.



34

Figure 4.3. Perspective view of the STAR detector [51].

4.2.1 Trigger Detectors

STAR has five main trigger detectors relevant to our analysis: the Central Trigger

Barrel (CTB), the two Zero Degree Calorimeters (ZDC) and the two Beam Beam

Counters (BBC).

The ZDCs are situated ± 18 m from the center of the STAR detector and are at

zero degrees with respect to the beam direction (θ < 2 mrad). The ZDCs measure the

energy of spectator neutrons, since charged fragments are bent away by the steering

dipoles situated between the STAR detector and the ZDCs. Real collisions can be

distinguished from background events by selecting events with ZDC coincidence. To

ensure comparability of the results all four RHIC experiments have the same ZDC

design. Recently, Shower Max Detectors were added to the ZDCs to extend the

forward capabilities of STAR and open new analysis possibilities such as strangelet

search and directed flow measurements.

The CTB subsystem completely encloses the TPC, and covers |η| < 1.8 and

2π in azimuth. It comprises 120 trays with 2 scintillator slats each. The photons
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in the scintillators are collected by photo-multiplier tubes, whose light output is

proportional to the measured charged particle multiplicity at mid-rapidity. The flux

of charged particles is proportional to collision centrality. In Au-Au collisions trigger

selection and centrality are determined from the combined ZDC and CTB signals.

The Beam Beam Counters are hexagonal scintillating tiles mounted outside on

the east and west poletips of the STAR magnet. The inner ring consists 18 small scin-

tillating tiles, and the outer ring consists 18 large scintillating tiles. In pp collisions,

the BBC coincidence provides the minimum bias trigger.

4.2.2 Forward Time Projection Chamber

Figure 4.4. Schematic view of an FTPC [53].

The Forward Time Projection (FTPC) chambers extend the STAR coverage to

pseudorapidities between 2.5 < |η| < 4.0. The two FTPCs are located between

the beam pipe and the inner field cage of the TPC, at the two sides of the SVT.
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Both FTPCs have cylindrical shape with a 75 cm diameter and 120 cm length. Due

to the limited space and to achieve good two-track separation close to the beam

direction, a radial drift field configuration is implemented with a Ar − CO2 gas

mixture. The short drift length is not sufficient to provide enough dE/dx information

to identify particles, but charged particle momentum can be measured between 2.5

and 4.5 GeV/c in full azimuth and the momentum resolution is estimated to be

12 − 15% [53]. In the Year 3 dAu run the charged particle multiplicity measured in

the FTPCs provides the centrality selection for data analysis.

Figure 4.5. Schematic view of the STAR TPC [54].

4.2.3 The Time Projection Chamber

The main tracking detector of the STAR experiment is the Time Projection

Chamber. It extends ± 2.1 m from the center of the detector, providing 2π azimuthal
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Figure 4.6. Bulls eye view of a typical Au-Au collision in the STAR TPC.

coverage. The total diameter is 4 m, the inner drift volume starts at 50 cm (radius)

and extends to the outer drift volume 200 cm (radius) as shown in Fig.4.5 by the

inner and outer field cages. Thus the sensitive tracking pseudorapidity interval is ±
1.2 - 1.5 units.

The thin conducting Central Membrane (CM) is situated in the center of the

TPC and splits the tracking volume in the beam direction. The CM (cathode) is

held at -28 kV while the anodes are at 0 V. The field cage cylinders and the 182

attached rings provide equipotential planes from the CM to the anode planes. The

uniform electric field henceforth is created with the careful design of the field cages,

the Central Membrane and the anode planes.

Since the directions of the uniform magnetic and electric fields are parallel, the

transverse diffusion (with respect to the electric field) is small. The Lorentz force

keeps the charged particle on a circular path around the electric field line.
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Figure 4.7. Side view of the STAR detector [51].

Figure 4.8. Bulls eye and cross sectional view of the STAR detector,
indicating the position of the subdetectors. Figure is taken from [49].

The uniformity of the field is essential since the electrons produced by a charged

particle traversing through the TPC volume have to drift ∼ 2 m to the read out

planes. The gas is required not to attenuate the drifting electrons and provide a pure

enough environment to avoid the loss of electrons due capture on oxygen or water
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molecules. Hence, TPC is filled with P10 gas that is a mixture of 10% methane and

90% argon [55] and regulated at +2 mbar above atmospheric pressure. The oxygen

content is kept below 100 parts per million and the water content is kept below 10

parts per million.

The typical drift velocity in TPC gas is ∼ 5.45 cm/µs and can be monitored in

each run with a precision of ∼ 0.001 cm/µs and over several days can change by ±
0.01 cm/µs. The large scale of the drift in z direction sets limits on the sampling rate

and the resolution. At full magnetic field (0.5 T) the transverse diffusion after 210 cm

is about σT ≈ 3.3 cm and sets the scale for the read out chambers. The longitudinal

diffusion (σL ≈ 5.2 mm) limits the time resolution of the clusters traversing the whole

TPC volume to ∼ 95 ns, or a sampling rate 10 MHz. Here we should note that with

the recent DAQ upgrade (DAQ100) the final event collection rate including the TPC

and other subdetectors is ∼ 60 - 80 MHz.

The geometry of the read out pad planes can be seen in Fig. 4.6. The endcaps

(Multi Wire Proportional Chambers) of the TPC are divided into 12 sectors. Each

sector is divided into two parts: inner and outer sector. The inner and outer pads

all together contain 5690 pads which translate to 136,560 channels for the whole

TPC. The signals from the pads are amplified, shaped and passed to the ADCs. The

combination of X and Y positions and the drift time of electron clusters allow precise

measurements.

Besides the position measurement the TPC is capable of momentum determina-

tion from 100 MeV/c to 30 GeV/c. Particle identification with the dE/dx method

alone is possible in the momentum range of 100 MeV/c to 1.2 GeV/c, but with

combined techniques can be extended to very high transverse momentum (above 10

GeV/c) [56].
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4.2.4 The STAR magnet

The STAR magnet provides uniform solenoidal a magnetic field. It is parallel to

the beam pipe and encloses most of the detector subsystems.

In Fig. 4.7. the magnet is shown in blue and the coils are shown in red. Due to the

uniform field the charged particles move on a helical trajectory in the lowest order of

the approximation. This enables a fast pattern recognition and track reconstruction.

The field strength can be varied between 0 and 0.5 Tesla. Data sets presented in this

work are measured at 0.5 T. The magnetic field is reversible, and in each run data

are taken at both polarities to account for systematic effects. A thorough mapping

of the magnetic field shows that uniformity is achieved on the level of ± 50 Gauss

(25 Gauss) in radial and less than ± 3 Gauss (± 1.5 Gauss) in azimuth for full (half)

field setup. Distortion effects on the tracks thus can be calculated to the order of ∼
200 µm [52].
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5. Event reconstruction and particle identification

5.1 Event reconstruction

In this chapter we discuss the event reconstruction and the extraction of raw

particle yield via the dE/dx method. The main detector for the analysis is the Time

Projection Chamber (TPC) of STAR.

5.1.1 Hit and cluster finding

Each TPC sector has 45 pad rows as shown in Fig. 4.6. Hence a charged par-

ticle traveling through the TPC can leave 45 possible hits. Reading out the pixel

information of the padrows allows the location of the hit to be determined. The

hit finder algorithm reads in the time ordered information from each padrow pixel,

that are above a trigger threshold and marked as good channels by the DAQ (Data

Acquisition System). Gain correction and timing information are also included in

the hit finding. In the next step the cluster finder identifies hits in a 2D cluster in

the plane of the padrow and the longitudinal direction. In the cluster a single hit as

a centroid of the 2D distribution or multiple hits as local maximum in the deconvo-

luted distribution can be determined. Deconvolution of the hits is very important

in particle identification and multiplicity measurements. The deconvoluted hits are

converted to real space points in the local coordinate system of the TPC, including

the calibration parameters such as drift velocity, trigger timing and geometry. Beside

the space information the deposited energy is also stored for each hit.
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5.1.2 Track finding

The track finder, starting from the outer padrows, assigns hits to a track candi-

date. In the first iteration many track segments (tracklets) are created as candidates

for a track. Then, these track segments are fitted by the algorithm that keeps or

rejects the hits, depending on their position with respect to the fitted track. In this

stage of fitting the effect of multiple Coulomb scattering and energy loss assuming

pion mass are taken into account. At the end of the algorithm, the collection of the

tracks is produced with their space coordinates and their 3-momenta.

5.1.3 Global and primary tracks

As the final step in the event reconstruction the global and primary tracks are

created. As mentioned in the previous subsection, tracks are reconstructed in the

local coordinate system of the TPC. To perform data analysis, global information

of the tracks is needed. The global track finder first re-fits the tracks in the TPC,

based on a 3D helix model. After the re-fit with the knowledge of the alignment

of the different subsystems, the global track finder reconstructs the global tracks

from the ’local’ tracks in the subdetectors. Based on the information of the global

tracks in the event the primary vertex can be found. Those global tracks with a

distance to the primary vertex smaller than 3 cm (distance of closest approach,

hereafter: dca), are re-fitted including the primary vertex as an additional point in

the fit. In the analysis these primary tracks are used. Primary tracks are largely the

particles produced in the primary interaction. Global tracks include a large number

of particles from background or pile-up processes.

5.2 Particle identification

As the main tracking detector of the STAR, the TPC can identify particles by

measuring the mass dependent specific ionization energy loss (dE/dx) at low trans-
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Figure 5.1. Top left figure shows the specific ionization energy loss
as a function of transverse momentum measured in the TPC. The
white dots represent the fitted π−, e−, K− and p centroids. Top
right figure shows the kaon mass parameterized z distribution. Left
bottom plots shows the proton mass and right bottom plots shows
the pion mass parameterized z distributions.

verse momentum (pT < 1.5 GeV/c). A charged particle traversing the TPC gas

volume ionizes the gas atoms. In the electric field these charge clouds drift from

their creation point to the two ends of the TPC, where the charges are read out on

the padrows. Produced charge in each hit on a padrow is proportional to the energy

loss of the particle traversing through the TPC volume. If a particle travels through

the entire TPC volume, 45 dE/dx points can be measured on the 45 padrows.

Energy loss of a charged particle for a given track length can be described with a

Landau probability distribution. However, the mean of the distribution is sensitive

to the fluctuations in the tail of the distribution. Therefore, the highest 30% of

the measured charge clusters is discarded for each track. The truncated mean is
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calculated from the remaining 70% and defines the average ionization energy loss

used in the data analysis.

Specific ionization in an isotropic homogeneous medium can be parameterized by

the Bethe-Bloch formula:

−dE
dx

= 4πN0r
2
emec

2Z

A
ρ

1

β2
z2

[

ln

(

2mec
2

I
β2γ2

)

− β2 − δ

2

]

(5.1)

where N0 is the Avogadro number, re is the classical electron radius, Z is the atomic

number of the medium, ρ is the density of the medium, z is the charge of the particle

traveling through the medium, I is the ionization potential of the medium, and δ

accounts for the density effect of the medium.

As shown in Fig. 5.1 the dE/dx bands for particles with different mass can be

separated. Figure 5.1 also shows the kinematic range for particle identification:

antiprotons can be identified in 0.3 - 1.2 GeV/c, kaons can be measured in 0.2 - 0.7

GeV/c and the pions can be measured in 0.2 - 0.7 GeV/c. To extract the raw yield

of the particles one can introduce the so called z variable:

z = log

(

dE/dxmeasured

dE/dxparameterized

)

(5.2)

where (dE
dx

)measured is the measured energy loss and (dE
dx

)parameterized is the parameter-

ized form of the energy loss [57]. The z variable has the advantage that each particle

has a Gaussian distribution around the expected Bethe-Bloch value. In our analysis

a single parameter approximation of the Bethe-Bloch formula is used:

dE/dxmeasured = A ·
(

1 +
m2

p2

)

(5.3)

where A is a constant, m is the mass of a given particle and p is the total momentum

of the particle. Figure 5.1 (top left panel) shows the measured energy loss as a

function of transverse momentum in minimum bias pp collisions at 200 GeV. The

white dots represent the centroid positions of π−, e−, K− and p from the multi

Gaussian fits to the energy loss corrected zK− distribution. Figure 5.1 also shows

the z distributions of K−, π− and p. The energy loss band of the particle of interest

is centered around zero and the other bands are well separated.
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5.3 Extraction of raw particle yields

As noted above the specific energy loss is parameterized with the Bethe-Bloch

formula for each particle to calculate the z variable which is centered around 0. The

parameterization is slightly dependent on the multiplicity/centrality and adjusted

for each data production due to calibration. To extract the raw particle yields, the

z distributions/peaks are simultaneously fitted by multiple Gaussian functions, as

demonstrated in Fig. 5.2.
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Figure 5.2. Multi-Gaussian fit to the zK− distribution in 200 GeV pp collisions.

Charged pions can be separated in the transverse momentum region 200 - 800

MeV/c. Figure B.1 shows the multi Gaussian fits to the zπ− distribution in these

momentum slices. Black dots represent the measured zπ− distribution and the colored

lines represent the Gaussian fits to π−, e−, K− and the combined fit. The raw kaon

yield can be extracted in the transverse momentum region ∼200 - 800 MeV/c. The

extraction of the raw yield is more complicated since the electron and kaon peaks

start to merge at ∼ 450 MeV/c. Therefore, the raw electron yield is extracted in the

pT < 450 MeV region and extrapolated in the merged bins to obtain the raw kaon
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yields. The measured raw electron yield is fitted to an exponential function (inspired

by MC studies) in the momentum range 200 - 450 MeV/c. The fit result is fed to

the multi-Gaussian fit in the large pT region and the electron yield is either fixed or

left to vary within a reasonable range around the fitted value. The fit results are

shown in Figure B.2.

As shown in Fig. 5.1, electrons are also merged into the π band, although to a

less degree than the kaon band. In the merged region the same procedure is applied

as for pions. The raw electron yield is estimated from an exponential fit over the

momentum range where electrons are well separated.

Protons/antiprotons are well separated from the rest of the particles in the mo-

mentum region ∼ 300 - 1200 MeV/c, as shown in Fig. 5.1, and can be fitted to a

single Gaussian up to ∼ 850 MeV/c, as shown in Fig. B.3. In the following bins the

electron contamination is estimated the procedure is the same as for kaons.

Figure B.1, Fig. B.2 and Fig. B.3 show the typical fits to the negative identified

particles in 200 GeV pp collisions. Fits to positive particles and to 200 GeV dAu

and 62.4 GeV Au-Au data are similar. The momentum range can vary due to the

changing resolution of the dE/dx bands in the different datasets.
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6. Analysis method of identified charged particle spectra

In this section the analysis technique of identified charged particle spectra measure-

ments of π±, K±, p and p are reported for 200 GeV pp, 200 GeV dAu and 62.4 GeV

Au-Au collisions.

6.1 General procedure of data analysis

Before the detailed discussion, a general overview is given to provide a conceptual

framework for the data analysis. Our goal is to extract the corrected particle spectra

and their properties for identified pions, kaons and protons/antiprotons. Steps of the

analysis leading to the fully corrected identified particle spectra are listed below:

1. Good events are selected from data on tape, satisfying trigger and vertex re-

quirements. Event wise variables such as the uncorrected charged particle mul-

tiplicity are corrected for vertex inefficiencies upon selecting the good events

in pp and in minimum bias and peripheral dAu collisions.

2. Once a good event is identified, good tracks are selected based on the analysis

specific quality cuts. In the case of kaon or proton/antiproton tracks, each

track is corrected for energy loss upon selection.

3. At this point selected data includes event and track corrections, which is fol-

lowed by the extraction of raw yield from the multi-Gaussian fits described in

Sec. 5.3.

4. The extracted raw yield is corrected for tracking efficiency and acceptance

depending on particle type, multiplicity and/or centrality.
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• Raw pion yield is further corrected for weak decay and detector back-

ground contamination.

• Raw proton yield is corrected for background contribution from detector

material.

• In the case of minimum bias pp and dAu and peripheral dAu collisions,

a fake vertex correction is applied for all particle types.

5. Finally point-to-point systematic errors are assigned to each spectrum point.

At the end of this procedure the fully corrected identified particle spectra are

obtained and one can proceed to extract the bulk properties of the collisions which

will be discussed in the Result section.

6.2 Data sets and trigger

Data presented here are collected in three different RHIC runs: pp collisions at
√
sNN = 200 GeV in 2002, dAu collisions at

√
sNN = 200 GeV in 2003, and Au-Au

collisions at
√
sNN = 62.4 GeV in 2004.

Various combinations of the trigger detectors (BBC - CTB, ZDC - CTB) are

utilized to measure charged particle and neutral particle multiplicity. In pp collisions

the minimum bias events are selected by the coincidence of the two BBCs measuring

charged particle multiplicity near beam rapidity. In dAu collisions the minimum bias

events are obtained from the combination of BBC and ZDC coincidence. In Au-Au

collisions the minimum bias events are selected from the CTB-ZDC charged-neutral

multiplicity correlation. In each run the magnetic field strength is set at 0.5 Tesla.

6.3 Event selection

The position of the collision vertices are distributed around the center of the de-

tector. To select events with approximately uniform detector acceptance in pseudo-

rapidity, the primary vertex position has to be limited. Selection on the z component
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of the primary vertex is specific to the colliding species. Additionally, events have

to satisfy the following requirements: |vx| < 3.5 cm and |vy| < 3.5 cm.

To experimentally vary the impact parameter/centrality of the collision, cuts on

the uncorrected reference multiplicity (or charged particle multiplicity) are applied.

The uncorrected reference multiplicity is defined as the number of charged primary

tracks in pseudo-rapidity (η): -0.5 < η < 0.5.

The specific z vertex and multiplicity/centrality selection is presented below.

6.3.1 Proton - Proton collisions

The z component of the primary vertex in each minimum bias event has to

satisfy the following condition: |vz| < 30.0 cm. With this vertex cut and minimum

bias trigger 3.9 M good minimum bias events are selected. Figure 6.1 shows the

uncorrected reference multiplicity distribution in minimum bias pp collisions. To

gain more insight, we will investigate the bulk properties not only in minimum bias

pp collisions but also as a function of charged particle multiplicity. In pp collisions

five multiplicity classes are chosen as summarized in Table C.4.

6.3.2 Deuteron - Gold collisions

In dAu collisions the z component of the primary vertex in each minimum bias

event has to satisfy the following condition: |vz| < 50.0 cm. With this vertex cut and

minimum bias trigger, 8.8 M good events are selected. Broader vertex distribution

is used in dAu than in pp collisions because of the asymmetric bunch timing. In

dAu collisions the uncorrected reference multiplicity is defined in the East FTPC,

as shown in Fig. 6.2, (situated on the outgoing Au side) as the number of charged

primary tracks in the pseudo-rapidity range of: -3.8 < η < -2.8. Three centrality

classes are selected based on the East FTPC, which represent 0-20%, 20-40%, 40-

100% of the geometrical cross-section. Figure 6.3 shows the uncorrected charged

particle multiplcity measured in the East FTPC as a function the TPC multiplicity.
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Figure 6.1. Uncorrected reference multiplicity distribution in 200
GeV minimum bias pp collisions.

Collisions selected in a FTPC multiplicity window correspond to a broad range

of multiplicites in the TPC. Figure 6.4 shows the multiplicity distributions of the

corresponding FTPC centrality selection.

Collision properties for pp and dAu collisions are summarized in Table C.4.

6.3.3 Gold - Gold collisions

Events collected in 62.4 GeV Au-Au collisions are required to have a z vertex

component in |vz| < 30 cm. With this vertex cut and minimum bias trigger se-

lection 6.3 M good events are selected. Nine centrality classes are defined based

on the charged particle multiplicity measured in -0.5 < η < 0.5. Figure 6.5 shows

the centrality selection of the uncorrected charged particle multiplicity in 62.4 GeV

collisions and the corresponding multiplicity and centrality selection in 200 GeV col-
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Figure 6.2. Uncorrected charged particle multiplicity measured in the
East FTPC (on the outgoing Au side) in 200 GeV dAu collisions.

lisions. The nine centrality bins correspond to the fraction of the total geometrical

cross-section: 0 - 5%, 5 - 10%, 10 - 20%, 20 - 30%, 20 - 30%, 30 - 40%, 40 - 50%, 50

- 60%, 60 - 70%, 70 - 80% as shown in Table C.4. The last centrality bin 80-100% is

not used in data analysis due to significant trigger bias.

6.4 Track selection

Tracks selected for spectra analysis are required to satisfy certain quality cuts.

The first criterion is the number of fit points cut. Tracks traversing through the

TPC volume can leave 45 possible hits. To avoid splitting tracks we require at least

25 fit points on the track. The distance of closest approach (dca) should be less

than 3 cm, which ensures that tracks come from the triggered event vertex and not

from a secondary collision or interaction. These tracks are called primary tracks.
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Figure 6.3. Uncorrected charged particle multiplicity measured in the
East FTPC vs. measured in the TPC in 200 GeV dAu collisions.

To estimate the systematic errors on track selection three additional variations of

quality cuts have been implemented as shown in Table 6.4. Set 1 represents the

default quality cuts for the spectra analysis implemented in this work.

Table 6.1
Collection of quality cuts, implemented for systematic studies.

Cuts Set 1 Set 2 Set 3 Set 4

|y| < 0.1 0.1 0.1 0.3

Number of fit points ≥ 25 35 25 25

dca (cm) ≤ 3.0 3.0 1.0 3.0
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Figure 6.4. Uncorrected charged particle multiplicity measured in the
TPC in 200 GeV dAu collisions. Color coding refers to the centrality
selection as shown in Fig. 6.2.

6.5 Short description of Monte Carlo Glauber calculation

Sometimes it is desirable to connect measurements to geometrical quantities of

the collisions. Typical examples are the number of participants (Npart) and the

number of binary collisions (Nbin or Nbin) or even the impact parameter (b). These

parameters cannot be directly measured, but can be calculated in a geometrical

model of a nucleus-nucleus collision, namely the Glauber model [58]. The model is

based on individual nucleon-nucleon collisions which are controlled by the elementary

nucleon-nucleon cross-section. In the Monte Carlo Glauber calculation nuclei are

independently generated, distributing the nucleons according to the Wood-Saxon

density profile:

ρ(r) =
ρo

1 + e
r−r0

a

. (6.1)



54

<0.5)η (-0.5<raw
chn

0 100 200 300 400 500 600 700 800

ev
en

t
/N

ra
w

ch
/d

n
ev

en
t

dN

-610

-510

-410

-310

-210

-110

Figure 6.5. Uncorrected charged particle multiplicity measured in the
TPC in 62.4 GeV Au-Au collisions (front) and in 200 GeV Au-Au
collisions (back).

Here r0 = 6.5±0.1 fm and a = 0.535±0.027 fm are experimentally measured in e-Au

scattering [59] and ρ0 = 0.169 fm−3 is fixed by the normalization. Each nucleon in

the nucleus is separated by a distance larger than dmin = 0.4 fm. This cut off value

is the characteristic length of the repulsive force acting on the nucleons.

Npart is defined as the total number of nucleons that underwent at least one

collision. Nbin is defined as the total number of interactions in the event. The

nuclei generation and the nucleon-nucleon selection is repeated with random impact

parameter (b) selection, where b2 is a flat distribution. The extracted quantities can

be studied as the fraction of the total geometrical cross-section. The distributions of

dσ/db (and dσ/dNpart and dσ/dNbin) are determined. Each distribution is divided

into bins corresponding to the fractions of the measured total cross-section of the
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used centrality bins and the mean values of 〈Npart〉 and 〈Nbin〉 are extracted for each

centrality bin.

Moreover, from the MC Glauber calculation the transverse area (SGlauber) of the

colliding nuclei can be determined from the spatial distribution of the nucleons. The

SGlauber is defined as the average transverse area of the overlapping nucleons in a

given centrality bin. To make a comparison with previously published results, the

overlap area (S) can also be calculated as:

S = π ·R2 = π ·
(

a0 · A1/3
)2

= π · a2
0 · (0.5 ·Npart)

2/3 (6.2)

where a0 = 1.12. For detailed description of the Glauber calculation implemented

in STAR, we refer the reader to [60]. In the calculations the proton-proton cross-

sections are obtained from the Particle Data Group [61].

The proton-proton cross-section used in the MC Glauber calculation is 36 ± 3

mb for 62.4 GeV and 41 ± 3 mb for 200 GeV. Systematic uncertainties are obtained

from the variation of the proton-proton cross-section by ± 3 mb and the variation

of the Wood-Saxon parameters. The calculated MC Glauber quantities are listed in

Table C.4.

6.6 Embedding

The correction in our analysis relies on good knowledge of the detector and its

simulation. The STAR geometry has been implemented in GEANT [62, 63] with

detailed detector material description. Moreover, realistic simulation of the TPC pad

response has been implemented [64] in the STAR simulation framework. Physical

processes such as drift of the electrons in the TPC gas, the amplification of the signal

at the sense/read-out wires, the induction on the readout pads, and the response of

the readout electronics (ADCs) are encoded in the TPC Response Simulator (TRS).

To obtain realistic corrections, simulated tracks (from GEANT) are embedded

into a real event at the raw data (ADC) level. The traces of charged particles in the

TPC are simulated, starting with the initial ionization of the TPC gas, then electron
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transport and multiplication in the drift field, and finally the induced signal on the

TPCs read-out pads and the response of read-out electronics (TRS). The obtained

raw simulated signal is then embedded into a real event and then passed through

the STAR Offline reconstruction chain. The resulting mixed events are of the same

format and contain the same information as real raw data delivered by the data

acquisition system. This procedure is called embedding, providing nearly realistic

simulation of the collision environment.

6.6.1 Hit level studies

To calculate proper efficiencies it is important to check the quality of the em-

bedding process. First, hit level quantities are compared from embedding and real

events, such as X-Y hit distributions in the east and west TPC padrows, as shown in

Fig. 6.6. Since the embedded MC tracks are reconstructed with real events starting

at the raw hit level, the calibration database of the given run has to be propagated

into the embedding as well. (Separate off-line event reconstruction chains are used

for embedding and real events.) Figure 6.6 shows the hit distributions from real

data (left panels) and embedding (right panel). The hits density is represented in

the color coding. The sector structure of the TPC is clearly shown. Empty white

spots in the sensitive area of the TPC represent dead sectors and the larger white

areas at the 4 o’clock position represents a bad Read Out Board for this particu-

lar run. Propagation of the correct hit level calibration information is essential to

calculate proper efficiencies.

The amount of embedded tracks is ∼ 5% of the total number of tracks in the real

event. To calculate acceptance and tracking efficiency corrections one has to use the

reconstructed associated tracks. In the reconstruction process hit information of the

MC track is kept and can be compared to the hit information of the reconstructed

tracks. A MC track is associated to a reconstructed track if they share at least

3 common hit points within 5 mm in x, y and z hit coordinates. For embedding
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Figure 6.6. Hit distribution in the East and West half of the TPC
for real and embedded events in 62.4 GeV Au-Au collisions.

calibration purposes, the longitudinal and transverse resolution have to be compared

to real data as a function of the longitudinal distance (z), the crossing angle and the

dip angle. In the local coordinate system of the padrow, a coordinate system can be

defined as the x axis is along the padrow direction and the y axis is perpendicular

to that, as shown in Fig. 6.7 (left panel). The first points of the track are denoted

as x0, y0, z0. The crossing angle is the angle enclosed by the momentum of the

particle crossing the padrow and the x direction. The dip angle (λ) is defined as

the angle between the momentum of the particle and the momentum component
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Figure 6.7. Schematic view of the crossing angle (λ) and the dip angle (φ) [65].

perpendicular to the drift direction, as shown in Fig. 6.7 (right panel). Hit level

quantities are propagated to track finding and hence to multiplicity and spectra

quantities, therefore embedding has to reproduce data reasonably well.
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Figure 6.8. Longitudinal hit resolution and mean as a function of
the tangent of the dip angle.

As an example of the hit level simulation of the TPC, the comparison of longitu-

dinal and transverse hit resolution between real data and embedding as a function

of the dip angle (Fig. 6.8), z vertex coordinate (Fig. 6.9) and the crossing angle

(Fig. 6.10) are shown. Plots are generated from negative kaon embedding and real
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Figure 6.9. Longitudinal hit resolution and mean as a function of the z coordinate.
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Figure 6.10. Transverse hit resolution as a function of the crossing
angle and the z coordinate.

data produced from 62.4 GeV Au-Au collisions in the transverse momentum range:

400 - 500 MeV/c. The embedding can reproduce real data well, both transverse and

longitudinal hit resolution is ∼ 10 - 12%, and deviation form the mean is less than

2 %.

6.6.2 Track level studies

Since the same analysis cuts are applied on the embedding and on real data, to

extract the efficiencies one has to compare the track level distributions (cuts used to

select tracks for identified particle spectra): dca and number of fit points (Nfit).
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Figure 6.11. Comparison of π− dca extracted from data and embed-
ding for 200 GeV pp collisions.
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Figure 6.12. Comparison of π− fit points, extracted from data and
embedding for 200 GeV pp collisions.

In the presented embedding real data comparisons are repeated for each particle

species, collision types and multiplicity/centrality. As one can see in the comparison

plots embedding can successfully reproduce real data within 3σ particle selection.

Figure 6.11 shows the dcaπ− distribution and Fig 6.12 shows the Nfitπ− distribution

in 200 GeV pp collisions. Figure 6.14 and Fig. 6.14 show the same distribution

for negatively charged kaons. Antiproton distributions are shown in Fig. 6.15 and

Fig. 6.16. Complete set of the dca and Nfit plots can be found in Appendix D.
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Figure 6.13. Comparison of K− dca extracted from data and embed-
ding for 200 GeV pp collisions.
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Figure 6.14. Comparison of K− fit points extracted from data and
embedding for 200 GeV pp collisions.

These distributions are also plotted for central (0-5%) and peripheral (70-80%)

62.4 GeV Au-Au collisions. The dcaπ− is shown in Fig. 6.17 and Fig. 6.18. The

Nfitπ− is shown in Fig. 6.19 and Fig. 6.20.

Dca extracted from real data shows wider a distribution compared to embedding,

especially at low transverse momentum. This is due to secondary contaminations,

especially at low momentum. The secondary contaminations is most pronounced in

the real proton dca distribution at low momentum.

The number of fit points cut is important to avoid merging and splitting tracks

in charged multiplicity (number of fit points ≥ 15) and spectra (number of fit points
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Figure 6.15. Comparison of p dca extracted from data and embedding
for 200 GeV pp collisions.
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Figure 6.16. Comparison of p fit points extracted from data and
embedding for 200 GeV pp collisions.

≥ 25) measurements. For each colliding set the number of fit points distributions

extracted from embedding and real data agree well for number of fit points 10 and

higher.

The overall agreement of the embedding and real data ensures that corrections

extracted from embedding reflect realistic calculations.
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Figure 6.17. Comparison of π− dca extracted from data and embed-
ding for 62.4 GeV Au-Au collisions.
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Figure 6.18. Comparison of π− dca extracted from data and embed-
ding for 62.4 GeV Au-Au collisions.

6.6.3 Corrections

Raw spectra are corrected for detector acceptance, tracking inefficiency, hadronic

interactions and resonance particle decays. The following subsections provide de-

tailed overviews of these corrections.

Since detector parameters (gas pressure in the TPC, temperature) can change

over the run, a minimum uncertainty (∼ 5%) is assigned to the obtained correction

factors. Errors on efficiencies are binomial and calculated as:

Err(p) =

√

p(1 − p)

N
(6.3)
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Figure 6.19. Comparison of π− fit points extracted from data and
embedding for 62.4 GeV Au-Au collisions.
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Figure 6.20. Comparison of π− fit points extracted from data and
embedding for 62.4 GeV Au-Au collisions.

where p is the efficiency in a given bin and N is the number of entries in the bin.

6.6.4 Energy loss correction

Low momentum particles lose a significant amount of energy traveling through

the detector material. The track reconstruction algorithm takes into account the

Coulomb scattering and the energy loss, but assumes pion mass for each particle.

Therefore, the reconstructed momentum for heavier particles (in our case: kaons and

protons/antiprotons) is biased, lower than the original momentum.



65

The correction is obtained from embedding by comparing the input MC and the

reconstructed momentum: preconstructed-pMC as a function of preconstructed as shown

in Fig. 6.21.

Increasing bias can be observed with increasing particle mass at low momentum.

Furthermore, Fig. 6.21 also shows the extracted correction for particles: π±, K±,

p and p for 200 GeV pp, 200 GeV dAu and 62.4 GeV Au-Au collisions. At low

transverse momenta the difference for protons is ∼ 100 - 120 MeV/c and decreases

to < 10 MeV at pT = 1 GeV/c. This limits our low pT cut off for protons/antiprotons.

The pion transverse momentum difference is flat through the measured pT range

and the correction is smaller than 0.3% at any pT . This is because π energy loss

is corrected in reconstruction and the remaining small effect is negligible. However,

kaons and protons/antiprotons show larger discrepancy between the MC and the

reconstructed transverse momentum at low momentum and the deviation from MC

input is the same for particles and antiparticles.

Energy loss for a specific particle type is independent of collision type (pp -

dAu - peripheral Au-Au) as expected. The slight difference between collision types

is due to the changing detector setup between different runs (pp: Run II., dAu:

Run III., and Au -Au: Run IV.) and only controlled by the amount of absorbing

material in the detector itself. Between the runs, as already mentioned, the SVT

supporting frame has been modified and a new silicon layer has been installed: SSD.

The GEANT description of the SVT and SSD becomes more refined through the

runs and the corresponding simulation packages, but it also introduces uncertainty

on the calculated efficiencies and corrections which is included in the overall 5%

uncertainty.

The energy loss correction for kaons and protons/antiprotons can be parameter-

ized as:

pT corrected = pT measured + c1 + c2

(

1 +
m2

p2

)c3

(6.4)

where m is the mass of the particle and ci (i=1, 2, 3) are the parameters extracted

from the fit to the energy loss curve. The change in the fit parameters is negligible be-
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Figure 6.21. Energy loss correction for π±, K±, p and p as a function
of momentum in 200 GeV pp collisions (first row), 200 GeV dAu
collisions (second row), central (0-5%) (third row) and peripheral
(70-80%) (fourth row) 62.4 GeV Au-Au collisions.
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tween the collision systems and centralities, therefore the characteristic numbers can

be quoted: c1 = 0.006(0.013) GeV/c, c2 = −0.0038(−0.0081), and c3 = 1.10(0.03)

for kaons (protons/antiprotons), respectively.

The energy loss correction seems to show a small dependence on centrality in dAu

and in Au-Au collisions. Weak dependence can be observed with varying quality

cuts. The change in the energy loss correction due to different rapidity selection in

|y| < 0.5 is negligible.

The energy loss correction is applied off-line to the raw data upon selecting tracks

from the dE/dx distribution to be used for spectra analysis. Since individual particle

identification is not possible, the energy loss correction of the particular specie of

interest is applied to all tracks, eg. when analysing kaons each track (even from the

pion and proton/antiproton bands) are corrected for kaon energy loss. This method

does not introduce artificial bias on the extracted raw particle yield, since raw yield

is only extracted for a particular particle at one time and it only changes the scale in

the direction of the transverse momentum, but leaves the magnitude of the dE/dx

unchanged.

6.6.5 Vertex correction

In pp and dAu collisions the average number of tracks per event is small compared

to Au-Au collisions, and the event rate is high. Multiple bunch crossing (pile-up)

within the same read-out window (complete drift of the triggered event to the read

out electronics) is a significant problem of drift detectors, which leads to high back-

ground rate in the triggered events. In higher multiplicity collisions a larger number

of tracks defines the vertex more precisely, but in low multiplicity collisions the ver-

tex finder (ppLMV: proton - proton Low Multiplicity Vertex Finder implemented

in STAR) is sensitive to pile-up events. Pile-up can shift the position of the recon-

structed primary vertex. In very low multiplicity events ppLMV can fail to find the

vertex.
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To correct for these inefficiencies, the possible problems are identified. In a

second step a physical quantity is identified which is insensitive to the pile-up rate

and accessible from data (since the pile-up level is not known from data). In the

third step data is corrected using the quantity mentioned above.
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Figure 6.22. Vertex inefficiencies in minimum bias pp and dAu col-
lisions at 200 GeV.

The ppLMV can fail to find the primary vertex or it can find the vertex at

a wrong place. To correct for these inefficiencies in pp and dAu collisions, MC

(HIJING) events were embedded to abort gap events and were reconstructed in

the full reconstruction chain. (Events triggered and reconstructed at empty bunch

crossings are called abort gap events.) In every MC event there is a well defined

primary vertex with well defined coordinates. After reconstructing the embedded

events with the MC information in hand the vertex reconstruction efficiency can be

studied.

In data analysis, only those events are taken which satisfy certain quality cuts.

The first one is the cut on the primary vertex position. The x and y positions are

well defined (and also restricted by the beam pipe), however the z position can vary

along the beam direction over a wide range due to the difference in bunch timing of

the two collider rings. Good events with z vertex position are selected from ± 30.0

cm in pp and ± 50.0 cm in dAu for data analysis. The overall vertex (in)efficiency

can be determined as the ratio of the number of reconstructed good events with
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respect to the number of good MC events satisfying the vertex cut, as shown by

Eq. 6.5.

Efficiency =
number of good reconstructed events

number of good MC events
(6.5)

This overall correction is applied as a multiplication factor to the extracted raw yield.
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Figure 6.23. Map of number of good primary tracks vs. number of
good global tracks.

To characterize the vertex inefficiency a parameter should be chosen that can

be measured in the data and is not effected by the pile-up. In order to study the

pile-up effect two simulated files of pp events are mixed at the raw data level and

reconstructed in the full event reconstruction chain. The first set is considered the

real event and the other set is used as the pile-up background event. The pile-up

range was varied from 0 - 100 %, where 100% means each real event has a pile-up

event in it. After mixing, events were reconstructed and the number of good global

and primary tracks were examined as a function of the pile-up level. (A global or

primary track is called good if its distance of closest approach is smaller than 3cm

and it has at least 15 fit points out of 45 possible).

The number of good primary tracks were chosen to characterize the vertex in-

efficiency since the number of good primary tracks is independent of the degree of

pile-up. The number of good global tracks increases with increasing pile-up rate

in the event. The vertex inefficiency cannot be described by the number of good
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Figure 6.24. Vertex finding efficiency as a function of good primary
tracks in 200 GeV pp and dAu collisions.

primary tracks directly. Hence, the correction is performed in two steps. First, the

number of lost events the number of fake events are obtained as a function of good

global tracks (which are required to have at least 15 hit points). This is shown in

Fig. 6.22. The number of good global track depends on the pile-up as well. In the

second step, the efficiency distributions are converted to the function of the num-

ber of good primary tracks through the mapping of the good primary good global

track distribution. The mapping is shown in Fig. 6.23. For each good primary track

bin the lost and fake distributions are convoluted with the good global distribution.

Finally, the vertex correction is given as a function of the number of good primary

tracks as shown in Fig. 6.24 and applied in each event to the raw particle spectra.

Each event and each track is weighted by the inverse of the vertex efficiency in pp,

minimum bias dAu and peripheral dAu events.
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extracted from embedding in 200 GeV pp collisions.

6.6.6 Fake vertex correction

As we mentioned in the previous section pile-up can affect the vertex reconstruc-

tion. One typical problem is the shifted vertex.

In the low multiplicity events the reconstruction software can be biased by the

pile-up and the vertex may be reconstructed away from the real vertex. This can

be studied via embedding. If the reconstructed vertex in the embedding is farther

than 2 cm from the corresponding MC vertex, the reconstructed vertex is labeled as

a fake vertex. In the real data it is not possible to determine whether a vertex is

fake or not. Therefore, one has to apply a different approach. It is found that the

transverse momentum spectrum of the fake events is different than the spectrum of

good events as shown in Fig. 6.25. Spectrum from fake events is flatter than from

good events, presumably due to the refitting of tracks including the wrong vertex

position.
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Figure 6.26. Fake vertex correction as a function of pT in 200 GeV
pp and dAu collisions.
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Figure 6.26 shows the ratio of charged hadron pT spectrum in good vertex events

to that in all events with a reconstructed vertex (i.e. sum of good and fake vertex
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events) for minimum bias pp and d-Au collisions. The spectra are normalized per

event before the ratio is taken. Therefore, a single function:

pgoodvertex
T

pallvertex
T

= c0 · ec1·p
c2
T − 1 (6.6)

is used for the pT -dependence of the fake vertex correction. The correction is done by

multiplying the pT spectra by the function described in Eq. 6.6. In low multiplicity

and minimum bias pp events and in peripheral and minimum bias dAu events the

correction is ∼ 3 - 5 % and vanishes around pT ∼ 1 GeV as shown in Fig. 6.26.

6.6.7 Tracking efficiency and acceptance

Raw particle spectra have to be corrected for detector and tracking efficiency.

The corrections are obtained from MC embedding. The obtained correction includes

the net effect of detector acceptance, tracking efficiency interaction losses, decays,

etc.

For each investigated particle specie (π±, K±, p and p) particles are embedded

with flat distributions in pT and y to have uniform statistics.

Tracking efficiency for 200 GeV pp collisions is shown in Fig. 6.27, for 200 GeV

dAu collisions in Fig. 6.28 and for 62.4 GeV Au-Au collisions in Fig. 6.29 and

Fig. 6.30.
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Table 6.2
Tracking efficiency parameterization for pions.

Collision π− (c0,1,2) π+ (c0,1,2)

pp MB 0.89905 0.06974 1.73860 0.90280 0.06526 1.60725

Au-Au 62.4 GeV 70-80% 0.84839 0.08926 2.55107 0.83915 0.12901 4.70611

Au-Au 62.4 GeV 0-5% 0.76833 0.06332 1.21189 0.76969 0.06244 1.18241

Table 6.3
Tracking efficiency parameterization for kaons.

Collision K− (c0,1,2) K+ (c0,1,2)

pp MB 0.73584 0.24398 2.49097 0.75943 0.23179 2.03419

Au-Au 62.4 GeV 70-80% 0.60802 0.23787 2.42484 0.51912 0.24281 5.39325

Au-Au 62.4 GeV 0-5% 0.45012 0.22891 3.92516 0.45835 0.23128 4.02922

Table 6.4
Tracking efficiency parameterization for protons/antiprotons.

Collision: p and p pp MB Au-Au 62.4 GeV 70-80% Au-Au 62.4 GeV 0-5%

p0 0.76733 0.930071 7.76198 32.7826 0.35058 0.33582

p1 0.28580 0.290520 0.30947 0.32498 0.30266 0.33119

p2 13.08348 10.57888 20.65861 16.3731 11.2653 9.44440

p3 0.11409 -0.00805 1.71647 5.65292 0.02679 0.01084

p4 - - 40.61263 363.1 0.53201 0.53312

p5 - - 3.29003 732.8 0.09304 0.22337

p6 - - 0.13745 0.09921 1.11354 2.66341
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Tracking efficiencies for π+ and π− are similar. Pion efficiency quickly rises from

pT = 0.1 GeV/c to pT ≈ 0.3 GeV/c and levels off at ∼ 90%. Small difference can

be observed at low transverse momenta for K+ and K− and for p and p due to the

absorption effect in the detecor material. Kaon efficiencies rise monotonicaly with

increasing transevse momentum. Proton/antiproton efficiencies rise sharply around

pT = 0.3 GeV/c and flatten out with an increasing damping in mid-central and

central Au-Au collisions.

Calculated tracking efficiencies depend on the measured particle multiplicity,

which is clearly shown in Au-Au collisions, comparing the most central (0-5 %)

and the peripheral bins (eg. 60-70 %). The change in the pion efficiency at pT = 400

MeV between most central and most peripheral Au-Au collisions is ∼ 20 %, which

correspondes to a change of 350 between the average charged particle multiplicity of

the two centralities. In pp and dAu collisions the variation of event multiplicity is

small (in the highest multiplicity pp bin the average multiplicity is ∼ 10, and ∼ 19

in central dAu collisions), therefore tracking efficiency has no dependence on event

classes.

Tracking efficiency also depends on the quality cuts as expected. The final cor-

rected spectra should be the same for different quality cuts. Systematic uncertainties

in efficiency can therefore be assessed by different quality cuts.

The extracted raw identified particle spectra are corrected for tracking efficiencies

through the following parameterizations. Pion tracking efficiency is fitted to the

following function:

Efficiency (π) = c0 · e−
�

c1
pT

�c2

(6.7)

where c0,1,2 are the parameters. To account for the flat rising part of the kaon

efficiency the following function can be used:

Efficiency (K) = c0 · e−
�

c1
pT

�c2

+ c3 · pT (6.8)

where c0,1,2,3 are the parameters. To characterize the proton/antiproton efficiency

two different functions are implemented. For saturating efficiency in pp and dAu
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collisions a similar form can be used as for kaons.To account for the small decrease in

the proton/antiproton efficiency a simple linear combination of the previous functions

can be used in mid-central and central Au-Au collisions. Table 6.2, Tab. 6.3 and

Tab. 6.4 show a representative set of the extracted parameters.

As Figs. 6.27, 6.28, 6.29, 6.30 show, these functions describe the tracking efficien-

cies well.

6.6.8 Pion background corrections

The pion spectra are corrected for weak decays, muon contamination and back-

ground pions from the detector materials. Corrections are extracted from HIJING

and PYTHIA simulations propagated through the STAR geometry and reconstructed

as real data. For each simulated particle, the origin, the parent particle and the de-

cay particle type are known. From this information, we can select pions created

in the simulated collision (primary particles) from the ones created in the detector

material or produced from resonance decay.

The weak-decay daughter pions are mainly from K0 and Λ and are identified by

the parent particle information accessible from the simulation. In real data, pion

decay muons can be mis-identified as primordial pions because of the similar masses

of muon and pion. By selecting the parent particle information in the simulation,

the muon contamination can be extracted.

Once these selections are applied, the amount of background contamination can

be extracted for each transverse momentum bin as shown in Fig. 6.31 for 200 GeV

pp and in Fig. 6.32 for 200 GeV dAu collisions. The magnitude of the background

pion contamination falls steeply. At low transverse momentum (pT = ∼ 0.3 GeV/c)

it is in the order of ∼ 15% and decreases to ∼ 5% at pT = 1 GeV/c.

The pion background is independent of event multiplicity in 200 GeV pp and d-Au

collisions; therefore, a single correction is applied. In 62.4 GeV Au-Au collisions the

multiplicity dependence of the pion background is week, within 1.5% over the entire
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centrality range. Therefore, a single averaged correction is applied to all centralities,

similarly to [72]. The correction is shown in Fig. 6.33.

6.6.9 Proton background corrections

A particle, created in the primary collision, has to travel through the beam

pipe, the SVT (and SSD) layers and the support structure and finally the TPC

Inner Field Cage (IFC) before it can be detected in the TPC active drift volume.

Particles traversing through the detector material create secondary particles due to

the interaction with the nuclei of the detector material [66]. Radiation lengths are

small for the subsystems (SVT: < 6% [67], SSD: 1% [68] and TPC IFC: 0.5% [54])

but the level of background protons is considerable at low pT .

To correct for background protons, the dca distributions of protons and antipro-

tons are extracted and compared from real data. Since the dca distribution of the

background protons cannot be obtained from real data, the dca distribution of the

background protons is obtained from embedding. The method presented here is the

same as can be found in earlier STAR publications [69,70].

Due to the geometry of the detector structure, secondary protons are created far

from the primary vertex (couple cm away, mainly in the beam pipe), hence their

global dca will be larger than for primary protons. Since antiprotons do not create

secondaries their dca distribution should be the same as that primary protons, hence

the background contribution can be extracted as follows:

dcaproton = p1 ·dcabackground protons + p2 ·dcaantiprotons + p3 ·dcaprimary protons (6.9)

Primary tracks are selected within 3σ of the Bethe-Bloch parameterization of the

protons/anitproton energy loss bands. The dca of primary tracks is defined up to 3

cm, therefore to extract proper corrections, one has to access the dca region up to 10

cm or so. This is achieved through the mapping of global tracks to primary tracks.
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In real data there exists a map between primary and global tracks, so the mo-

mentum of global tracks can be associated to the primary one (global and primary

momentum can be different for the same track due to refitting) and can be corrected

for energy loss of protons/antiprotons (which is obtained for primary tracks). By

mapping the global tracks to the energy loss corrected primary tracks, the global

dca of global tracks corrected global momentum map is created. This map is ob-

tained for each multiplicity/centrality bin. By this mapping, proton and antiproton

dca distributions can be compared up to dca ∼ 20 cm, in each pT bin, as shown in

Fig. 6.34.

The long, nearly flat dca tail in the proton distribution comes mainly from knock-

out background proton, due to interactions of produced particles with detector ma-

terials. Antiprotons do not have knock-out background and the flat dca tail is absent

from their dca distribution. In order to correct for the knock-out background pro-

tons, the dca dependence at dca < 3 cm is needed for the knock-out protons. Such

a dependence is obtained from MC simulations, and is found to be of the form [69]:

pknocked−out proton(dca) = 1 − e
− dca

dca0 . (6.10)

This background contribution is indicated by the green curve in Fig. 6.34 and for

the rest of the proton background plots in this subsection.

Assuming that the background subtracted proton dca distribution is identical in

shape to the anti-proton dca distribution, Eq. 6.9 can be written as:

p(dca) = p(dca)/rp/p + A · pknocked−outproton(dca). (6.11)

Data can be fitted treating the magnitude of the background protons A, the para-

meter dca0, and the antiproton-to-proton ratio rp/p as free parameters.

This assumption is, however, not strictly valid because the weak decay contribu-

tions to proton and anti-proton are in principle different and the dca distribution of

the weak decay products differs from that of the primordial (anti-)protons. However,

the measured anti-lambda/lambda ratio is close to the anti-proton/proton ratio [71].
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The difference in dca distributions between protons and anti-protons arising from

weak decay contaminations is small.

The dca distributions of protons and antiprotons in Au-Au collisions are fitted

with Eq. (6.11) in each pT and centrality bin, as shown in Fig. 6.34. The obtained

fraction of knock-out background protons is approximately 60% at pT = 0.35 GeV/c

and less than 5% at pT = 1 GeV/c. The amount of knock-out background protons

depends directly on the total particle multiplicity and their kinetic energies produced

in the collisions. Since the proton multiplicity over total particle multiplicty varies

somewhat with centrality and the particle kinematics change with centrality, the

background fraction depends on centrality. The variation from peripheral to central

collisions is on the order of 10% in Au-Au collisions.

In pp collisions, the proton background strongly depends on the multiplicity, as

shown in Fig. 6.35 and Fig. 6.36, Fig. 6.37. In large multiplicity events the evolution

of the dca distributions are the same as observed in Au-Au collisions, but in low mul-

tiplicity events, even in minimum bias pp collisions, significant background excess

develops. This background excess is smaller in minimum bias and peripheral dAu

collisions, than in pp collisions and disappears in central dAu collisions as shown in

Fig. 6.6.9. Looking at pp and peripheral and minimum bias dAu collisions in detail,

on top of the long, flat dca tail due to knock-out protons, there are two bumps in the

proton dca distribution, one at dca < 4 cm and the other at 4 < dca < 10 cm. These

bumps, absent from the antiproton dca distributions, come from other sources of pro-

ton background. The sharp drop at 4 cm suggests that they come from interactions

in the beam pipe which is at radius of 4 cm. For straight tracks originating from the

beam pipe and uniform in azimuth, the distribution in dca (from the primary vertex

of the real event) would be of the form of 1/
√

1 − (dca/4cm)2. This form gives not

an unreasonable description of the bump at dca < 4 cm considering the finite dca

resolution and curving of low momentum particles in the magnetic field.

One possible source of such interactions is those between beam protons and the

beryllium beam pipe. Such interactions are asymmetric and have a nucleon-nucleon
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center-of-mass energy of
√
SNN ≈ 14 GeV, which is smaller than that at the SPS.

The proton-antiproton pair production rate is small compared to the number of

protons transported from the initial baryons; the antiproton/proton ratio at mid-

rapidity (y ≈ 2.5) should be smaller than that at the SPS, which is on the order of a

few percent. While the produced particles (pions, antiprotons, etc.) are symmetric

in rapidity, the proton rapidity distributions should be peaked significantly toward

the target rapidity (y = 0) because a large fraction of the protons come from the

beryllium target. The number of these protons may not be small compared to protons

produced in 200 GeV pp collisions though the relative magnitudes of the bump and

produced protons in a pp collision depend on the rate of the background interaction

per pp event. At y = 0, the antiproton/proton ratio should be significantly smaller

than that at y ≈ 2.5, which could explain that such a background is not observable

in the antiproton dca distributions.

In principle, such background interactions should also be present in Au-Au run-

ning, depending on the quality of beam focusing. However, the center-of-mass of

Au-beryllium interactions is shifted significantly to the Au beam rapidities. The

proton (and antiproton) yield at rapidity y = 0 should be very small. This is espe-

cially so when compared to the large multiplicity in Au-Au collisions.

The bump at 4 < dca < 10 cm in the proton distribution in pp could be due to

interactions between the beam and the SVT and SSD materials which are located

outside the beam pipe. The two-bump structure is also observed in minimum bias

d-Au and peripheral d-Au collisions. The effect is not significant in the other two

centralities of d-Au.

In order to correct for those background protons, the bumps are parameterized

by

pbump, 0<dca<4 cm =

(

1.2 + 1.8
dca

4cm

)(

1 − exp

[

−7.2

(

1 − dca

4cm

)])

(6.12)

pbump, 4<dca<10 cm = 0.54

[

1 −
(

dca

3cm
− 7

3

)2
]

(6.13)
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The dca distributions from pp (minimum-bias and various multiplicity classes) and

d-Au (minimum bias and the peripheral centrality) are fitted with

p(dca) = p(dca)/rp/p + A · pknock−out +B · pbump, (6.14)

treating A, dca0, B, and rp/p as free parameters. For the two non-peripheral d-

Au centralities, the same fit procedure using Eq. 6.11, as for the Au-Au data, is

used. Different curves in Fig. 6.35 represent the various background contributions.

The green curve is the knock-out proton background described by Eq. 6.10. The

pink curve is the additional proton background described by Eq. 6.13. The black

histogram is the fit results by Eq. 6.14. The fitted background protons are subtracted

from the proton data.

The knock-out proton background should scale with the event multiplicity, as the

fit results indicate. If the beam-material interaction is responsible for the two-bump

structure, then the magnitude of such background should be independent of the event

multiplicity. This seems to be supported by the fit results. The parameter dca0 is

found to be approximately 2.0 in pp, d-Au and varies between 2.5 - 1.4 in Au-Au

collisions with increasing pT and shows almost no (weak) centrality dependence.

Figure 6.39 shows the fits to the obtained primary proton fractions as a function

of pT in minimum bias pp and dAu, and for two multiplicities/centralities in pp

and Au-Au. In higher multiplicity and minimum bias collisions the primary proton

fraction rises quickly from ∼ 30-40 % to 100 % in the measured proton spectra range.

The lowest multiplicity pp bin carries significant proton background even at larger

transeverse momentum. In dAu and Au-Au collisions the primary proton fraction is

larger and steeply increases to 100 %. Corrections depend on multiplicity/centrality

therefore the primary proton fraction is calculated for each multiplicity/centrality

selection.
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Figure 6.29. Tracking efficiency of π−, K−, p (left panels) and π+,
K+ and p (right panels) in 62.4 GeV Au − Au collisions as a function
of transverse momentum and centrality.
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Figure 6.30. Tracking efficiency of nπ−, K−, p (left panels) and
π+, K+ and p (right panels) in 62.4 GeV Au − Au collisions as a
function of transverse momentum and centrality.
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Figure 6.31. Correction to pion spectra for weak decays (Λ,K0
S and

muons) as a function of pT in 200 GeV pp collisions.
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Figure 6.32. Correction to pion spectra for weak decays (Λ,K0
S and

muons) as a function of pT in 200 GeV dAu collisions.
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Figure 6.33. Averaged correction to pion spectra for weak decays
(Λ,K0

S and muons) as a function of pT in 62.4 GeV Au − Au colli-
sions.
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Figure 6.34. Sample proton/antiproton dca distributions for various
transverse momenta in central (0-5%) and in peripheral (70-80%)
62.4 GeV Au-Au collisions.

dca (cm)
0 2 4 6 8 10

ev
en

t
C

o
u

n
ts

/N

0

0.001

0.002

0.003

0.004

0.005

0.006
-110×

 < 450 MeV/cT400 MeV/c < p
Proton
Antiproton

MC background
Backrgound
Fitted total

/NDF = 1.002χ

dca (cm)
0 2 4 6 8 10

ev
en

t
C

o
u

n
ts

/N

0

0.001

0.002

0.003

0.004

0.005

-110×

 < 650 MeV/cT600 MeV/c < p
Proton
Antiproton

MC background
Backrgound
Fitted total

/NDF = 0.692χ

dca (cm)
0 2 4 6 8 10

ev
en

t
C

o
u

n
ts

/N

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

-110×

 < 950 MeV/cT900 MeV/c < p
Proton
Antiproton

MC background
Backrgound
Fitted total

/NDF = 0.752χ

Figure 6.35. Sample proton/antiproton dca as a function of trans-
verse momentum in Minimum Bias 200 GeV pp collisions.
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Figure 6.36. Sample proton/antiproton dca as a function of trans-
verse momentum in Nch0−2 200 GeV pp collisions.
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Figure 6.37. Sample proton/antiproton dca as a function of trans-
verse momentum in Nch9−... 200 GeV pp collisions.
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Figure 6.38. Sample proton/antiproton dca as a function of trans-
verse momentum in minimum bias 200 GeV dAu collisions.

 (GeV/c)Tp
0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
ra

ct
io

n
 o

f 
p

ri
m

ar
y 

p
ro

to
n

s 
(%

)

0

20

40

60

80

100

120

)8-...200 GeV pp (Nch
200 GeV pp (MB)

)0-1200 GeV pp (Nch

 (GeV/c)Tp
0 0.2 0.4 0.6 0.8 1 1.2 1.4

F
ra

ct
io

n
 o

f 
p

ri
m

ar
y 

p
ro

to
n

s 
(%

)

0

20

40

60

80

100

120

62.4 GeV Au-Au (70-80%)
62.4 GeV Au-Au (0-5%)
200 GeV dAu (MB)

Figure 6.39. Fraction of primary protons as a function of transverse
momentum in 200 GeV pp collisions (left panel) and in 200 GeV dAu
and 62.4 GeV Au-Au collisions (right panels).
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7. Results and discussion

In this section we present the transverse momentum spectra of the invariant yield
(

1
2πpT

dN
dydpT

)

for identified charged particles: π±, K±, p and p̄ in 200 GeV pp, 200

GeV dAu and in 62.4 GeV Au-Au collisions. Their 〈pT 〉, dN/dy, and particle ratios

are studied. Bulk properties extracted from chemical and kinetic model fit results

are discussed.

7.1 Identified particle spectra
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Figure 7.1. Inclusive identified particle spectra (negative particles:
filled symbols, positive particles: empty symbols) measured in |y| <
0.1 in 200 GeV pp collisions. Spectra are plotted for five multiplicity
bins and the minimum bias spectra are also shown (grey markers).
Curves represent Bose-Einstein (pions) and Blast-wave fits (kaons
and protons/antiprotons). Errors are statistical and point-to-point
systematic errors added in quadrature. Spectra are scaled, see text
for details.
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Figure 7.2. Inclusive identified particle spectra (negative particles:
filled symbols, positive particles: empty symbols) measured at mid-
rapidity |y| < 0.1 in 200 GeV dAu collisions. Grey spectra points
represent minimum bias collisions. Curves represent Bose-Einstein
(pions) and Blast-wave fits (kaons and protons/antiprotons). Errors
are statistical and point-to-point systematic errors added in quadra-
ture. Spectra are scaled, see text for reference.

Fig. 7.1 shows the minimum bias π±, K±, p and p̄ spectra in 200 GeV pp colli-

sions. Spectra are measured at mid-rapidity in |y| < 0.1 in minimum bias collisions

and for five multiplicity bins. For each particle species, spectra are scaled for clarity,

except the minimum bias ones. The top spectra correspond to 8 ≤ Nch and are

scaled by a factor of 32. The next spectra represent 6 ≤ Nch ≤ 7 and are scaled by

a factor of 16. The third spectra from top represent 4 ≤ Nch ≤ 5 and are scaled by

a factor of 8. The next spectra represent 2 ≤ Nch ≤ 3 and are scaled by a factor

of 4. The next spectra are the minimum bias spectra and not scaled. The bottom

spectra represent 0 ≤ Nch ≤ 1 and are scaled by a factor of 0.5.

Minimum bias pp spectra are in good agreement with the previously published

pp results from STAR [72]. Pion spectra shapes are similar in each multiplicity

bin. However, kaons and protons/antiprotons show a small gradual flattening with
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Figure 7.3. Centrality dependence of identified particle spectra in
62.4 GeV Au-Au collisions (negative particles: filled symbols, pos-
itive particles: empty symbols). Spectra from top to bottom are:
0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70% and
70-80%. Curves represent Bose-Einstein (pions) and Blast-wave fits
(kaons and protons/antiprotons). Errors are statistical and point-to-
point systematic errors added in quadrature.

increasing multiplicity and this effect is more pronounced for protons/antiprotons.

Fig. 7.2 shows the minimum bias and centrality dependent π±, K±, p and p̄ spectra

in 200 GeV dAu collisions. The top spectra represent centrality 0-20% and are scaled

by a factor of 4. The next spectra show the mid-central bin 20-40% and are scaled

by a factor of 2. The third spectra from top represent the minimum bias spectra

and are not scaled. The bottom spectra represent the peripheral 40-100% and are

scaled by factor of 0.5. The minimum bias dAu spectra are in good agreement with

the previously published STAR results [73].

The flattening in the dAu spectra are less pronounced than in pp. This is presum-

ably due to the centrality selection by the FTPC. The relative difference in average

multiplicity between the most central and most peripheral events is smaller than in

pp collisions and the underlying physical processes might be different as well.
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Figure 7.4. Transverse momentum spectra in 200 GeV pp, dAu and
62.4 GeV Au-Au collisions. In panel (c): filled spectra points repre-
sent 0 - 5 % central collisions, empty spectra points represent 70 -
80 % peripheral collisions. Errors are statistical and point-to-point
systematic errors added in quadrature.

Fig. 7.3 shows the centrality dependence of the π±, K±, p and p̄ spectra mea-

sured in 62.4 GeV Au-Au collisions. Pion spectra shapes show small variation with

centrality. But the shapes of kaon and proton/anitproton spectra exhibit strong

dependence on centrality. The evolution is more pronounced than in pp or dAu.

In Au-Au collisions the change in the spectral shapes is clearly observable for

protons/antiprotons (less for kaons). The same spectra evolution is observed in

200 GeV Au-Au collisions as well [72]. Detailed discussion of the observed spectra

behavior will follow in Sec. 7.3 and Sec 7.5.1.

Fig. 7.4 shows the relative magnitude of the minimum bias 200 GeV pp, dAu and

the most peripheral and central 62.4 GeV Au-Au spectra. Magnitudes of spectra

show modest increase from pp to dAu to peripheral Au-Au collisions and a significant

enhancement from peripheral to central Au-Au collisions. Note that the separation

of proton and antiproton spectra in 62.4 GeV Au-Au collisions will be discussed later.

Spectra points and point-to-point systematic errors are listed in Spectra Tables in
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Appendix C.

7.2 Systematic uncertainties

Point-to-point systematic errors are estimated from the variation of the fit para-

meters, variation of the event and track selection. Since the pion energy loss band can

be cleanly separated, the pion average point-to-point systematic error is ∼ 4%. Kaon

point-to-point errors in the overlaping electron region are larger, ∼ 15 - 20 %, and

∼ 5% otherwise. Protons and antiprotons are well separated up to high transverse

momenta. Point-to-point uncertainty is ∼ 5% for the protons spectra overall. In

the region where the electrons merge they represent a small fraction of the extracted

proton yield, hence they do not significantly increase the point-to-point uncertain-
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Figure 7.7. Average transverse mass for kaons from AGS to SPS to
RHIC energies measured in 0 - 5 % Pb-Pb and Au-Au collisions. See
text for references.

ties in this region. The proton background correction is estimated to contribute to

the systematic uncertainty on the level of ∼ 5%. Further overall uncertainties are

introduced by embedding. Since selected runs represent all measured events for a

specific collision, a ∼ 5% uncertainty is assigned to tracking efficiencies.

7.2.1 Extraction of spectra properties

Particle yield (dN/dy), inverse slope parameter (T) and average transverse mo-

mentum (〈pT 〉) are extracted from the measured spectra and extrapolated outside

of the measured transverse momentum region. Extrapolation is based on different

functional forms presented in detail in Appendix B.
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The low momentum part of the particle spectra (pT < 2 GeV/c) has been consid-

ered exponential because of the thermal production mechanism. However, as shown

in Fig. 7.3 kaon and proton/antiproton spectra differ from exponential, especially in

central Au-Au collisions.

In elementary collisions (eg. proton-proton), particle production models describe

a static, thermal source that leads to exponential behavior of the low momentum

particle spectra. As it was known from the lower energy heavy-ion collisions, pressure

generated during the collision process boosts the produced particle away from the

center of the collision. This mechanism leads to an expanding source, which might

be thermalized. This pressure generated boost manifests itself in the change of the

shapes of particle spectra, depending on the mass of the measured particle [41].
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The blast-wave model [41] describes the hydrodynamical evolution of the heavy-

ion collisions. Due to the geometry of the collision, hydrodynamic equations are set

for a cylindrically symmetric system. The blast-wave model is only a parameteriza-

tion of the non-viscous, ideal hydrodynamical equations. The blast-wave model does

not account for particle production, only for their propagation through the hydro-

dynamical expansion of the system. The blast-wave model assumes local thermal

equilibrium, which is expected to develop early in the heavy-ion collisions, therefore

the system evolution starts from a thermalized state in the model.

Bulk particle spectra (π±, K±, p, p,Λ,Λ) in heavy-ion collisions can be simultane-

ously described by the blast-wave model with three parameters: the kinetic freeze-out

temperature (Tkin), the average transverse flow velocity (or radial flow, 〈β〉) and the

exponent of the flow profile (n). Since the blast-wave model describes the spectra of

the primordial particles (those particles which are created in the collisions process

and not from resonance decays) and pion spectra are expected to carry significant

contribution from resonance decays at low transverse momenta (pT < 0.5 GeV/c),

pion spectra points below pT < 0.475 GeV/c are excluded from the blast-wave fit.

Detailed investigation of the resonance contribution to extracted blast-wave para-

meters is described in Section 7.6.

Since the low momentum part of the pion spectra is not described well by the

blast-wave model, the Bose-Einstein functional form is chosen to extract spectra

properties. For each collision system the Bose-Einstein functional form provides

the best description of the measured pion spectra in transverse momentum region

accessible by the dE/dx technique. Kaon and proton spectra properties are extracted

from the blast-wave model fit, which gives the best description of the measured

spectral shapes in Au-Au collisions. Results presented in the following sections are

extracted in the way described above, unless stated otherwise.
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Figure 7.10. Various particle yields measured in central Au-Au/Pb-
Pb collisions as a function of center of mass energy. See text for
references.
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7.3 Average transverse momenta

To characterize the change in the measured spectral shapes by collision type,

energy and centrality, the average transverse momentum is investigated.

〈pT 〉 =

∫

1
2πpT

dN
dydpT

· 2π · p2
T · dpT

∫

1
2πpT

dN
dydpT

· 2π · pT · dpT

(7.1)

The definition of the average transverse momentum is given in Eq. 7.1. Numerical

integration goes from 0 to 10 GeV/c in the 〈pT 〉 calculations.

Investigation of the average transverse momentum as a function of charged hadron

multiplicity was an important analysis of previous experiments, since the anomalous

behavior of the average transverse momentum as a function of the measured charged

particle multiplicity can indicate the phase transition from the quark gluon plasma

to the hadronic phase [74]. Following van Hove’s approach: charged particle multi-

plicity is proportional to the entropy. The entropy is created early in the collision at
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thermalization, and followed by hydrodynamical adiabatic expansion with conserved

entropy. The shape of the transverse momentum spectrum carries the combined ef-

fect of the temperature in the collision and the expansion of the system. The average

transverse momentum increases as a function of charged particle multiplicity. In the

case of a phase transition the entropy density is expected to increase but the tem-

perature is expected to remain nearly constant. Therefore, the average transverse

momentum is expected to reach a plateau at large charged particle multiplicities.

In 200 GeV pp collisions the multiplicity selection allows a selection of events with

a few times the average multiplicity, and Au-Au collisions provide an even wider

multiplicity range.

Fig. 7.5 also shows the evolution of the average transverse momentum for 200

GeV pp, dAu and Au-Au collisions as a function of charged particle multiplicity and
√

dN/dy/S.
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The average transverse momentum of pions is flat through the collision sys-

tems. The average transverse momenta of kaons and protons/antiprotons follow

the same increasing trend for pp and dAu collisions. In the highest multiplicity

pp bin and in the most central dAu collisions the average transverse momenta of

kaons and protons/antiprotons are larger than in peripheral Au-Au collisions, al-

though the systematic errors overlap. The average transverse momenta of kaons and

protons/antiprotons increase from peripheral to central Au-Au collisions and exceed

that measured in the highest multiplicity the pp bin and in the most central dAu

collisions. In Au-Au collisions the increase is predominantly driven by the collective

expansion of the system. In pp and dAu collisions the increase of the average trans-

verse momentum, measured from the azimuthally averaged spectrum, is expected to

reflect the contribution from semi-hard scatterings and multi-parton collisions (kT

broadening). These different physical processes might lead to the observed departure

of the average transverse momenta in pp and dAu compared to Au-Au collisions.

Fig. 7.5 shows the evolution of the average transverse momentum for 62.4 GeV

and 200 GeV Au-Au collisions. First we notice that the average transverse momen-

tum for each particle species are the same within errors at both energies despite the

factor of 3 difference in the collision energies. This implies similar system evolution

at both energies despite the different initial conditions (energy density and baryon

constant of the collisions zone). The average transverse momenta of pions are flat

from peripheral to central collisions. The average transverse momenta of kaons and

protons/antiprotons increases quickly from peripheral to mid-central collisions and

seem to saturate for kaons and increase less steeply for protons/antiprotons. The

200 GeV Au-Au data are presented in [72]. Systematic errors on the 〈pT 〉 are also

estimated by using the various functional forms mentioned above for extrapolation

of the spectra, as can be found in [72].
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7.3.1 Average transverse mass

Kaon transverse mass spectra in nucleon-nucleon and in nucleus-nucleus collisions

from AGS to RHIC have exponential shape. Based on van Hove’s argument and to

seek a better understanding of the spectral shape evolution, instead of the average

transverse momentum, the average transverse mass is investigated [77]. Particle

spectra in 0-5 % central Pb-Pb/Au-Au collisions are fitted with the exponential

function:
d3N

2πmTdmTdy
≈ C · e−mT /T (7.2)

where T is the inverse slope parameter and the average transverse mass is given by:

〈mT 〉 = T +m +
T 2

m+ T
. (7.3)

Fig. 7.6, Fig. 7.7 and Fig. 7.8 present a compilation of the available data for 0-5

% central Pb-Pb/Au-Au collisions from AGS to RHIC energies [76]. It was argued

that a plateau structure is developed at SPS energies, where the transition between

confined and deconfined matter is expected to be located [77]. The plateau struc-

ture, in van Hove’s picture, similarly to the average transverse momentum - charged

particle multiplicity correlation, might indicate the onset of the phase transition.

It is interesting to place the 62.4 GeV STAR measurement between the top SPS

and the previously available RHIC energies. The flat trend as observed for pions at

the SPS seems to continue or there might be a hint for a small rise in the average

transverse mass. For kaons there is a small increase in the average transverse mass

toward RHIC energies. The average transverse mass of protons exhibit the steepest

trend with increasing energy.

We argue in light of the 62.4 GeV data points that a definite change can be ob-

served in the trend of 〈mT 〉 at the AGS-SPS energies for pions which is smoothened

out for kaons and protons/antiprotons toward RHIC energies. At this point a lower

energy RHIC run with high statistics would be necessary to test the above argu-

ments within the same experimental framework in the SPS energy range. One might

conclude from these excitation functions, that the initial conditions of the systems
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created in central (0-5 %) Pb-Pb/Au-Au collisions are similar from SPS to RHIC

energies and the increase of the collision energy is translated to the system expansion.

7.4 Particle production

7.4.1 Total dN/dy

The inclusive particle yield measured at mid-rapidity (|y| < 0.1) for each identi-

fied particle spectrum is calculated from the available measured pT range and extrap-

olated outside. For extrapolation two methods are used: Bose-Einstein fit function

for pions and blast-wave model calculation for kaons and protons. Table C and

Tab. C show the extracted dN/dy and the amount of extrapolation for each collision

system.

Fig. 7.9 shows the evolution of the extracted particle yields as a function of un-

corrected charged multiplicity. For each collision system, the extracted yield shows

nearly linear evolution with charged multiplicity. Fig. 7.10 shows a compilation of

extracted particle yields in central (∼ 0-5%) Au-Au/Pb-Pb collisions from AGS to

RHIC energies [84], including the STAR 62.4 GeV Au-Au data points as well (red

markers but with the same shape coding). One should note that data points pre-

sented for higher RHIC energies are measured by the PHENIX experiment. Weak

decay corrections are applied to proton/antiproton spectra but not to pion spec-

tra. Fig. 7.10 also depicts the particle composition of the collision products. Pion

production dominates at all energies above a center of mass energy ∼ 5 GeV kaon

production shows similar evolution to pions. One can observe a change in the trend

around
√
SNN= ∼ 5 GeV. Below this energy the collisions are dominated by the in-

coming nuclei, which undergo a significant stopping in the collision zone, also shown

by the proton yield. At higher energies, nuclei become more transparent, at the SPS

region production of particles with strange quark content starts to incerase and above

the top SPS energy the chemical composition evolves smoothly to RHIC energies.

The 62.4 GeV data set is situated in the transition region between collisions domi-
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nated by stopping and the transparent collisions, therefore contributes significanlty

to the systematic mapping of particle production in heavy-ion collisions. (Note that

in top RHIC energy collisions there is a finite number of net-baryon present in the

collision zone [72].)

7.4.2 Particle ratios

The particle-antiparticle ratios (π−/π+, K−/K+, p/p), and unlike particle ra-

tios (K±/π±, p(p)/π±) are presented as a function of multiplicity/centrality in this

section. Particle ratios are calculated from the integrated inclusive particle yields as

described in Section 7.2.1.

Fig. 7.11, Fig. 7.12 and Fig. 7.13 show the dependence of particle ratios for

π−/π+, K−/K+ and p/p as a function of charged multiplicity in pp, dAu and Au-

Au collisions at 200 GeV and in 62.4 - 130 - 200 [72] GeV Au-Au collisions.

The π−/π+ ratio is ≈ 1 at each collision energy and collision species. The ratios

are flat as the function of multiplicity/centrality. Similar behavior has been observed

at lower collision energies as well.

The K−/K+ ratios are close to 90 % in pp, dAu and Au-Au collisions at 200

GeV. The same ratios show slight decrease from 200 GeV to 130 to 62.4 GeV. At

lower energies due to the non-zero net baryon density in the collisions zone the

associated production of kaons with hyperons will be different from these produced

with antihyperons.

The p/p ratio seems to be flat through the various collision system at 200 GeV

within errors, although a slight increase might be observed from pp to dAu to pe-

ripheral Au-Au and there seems to be a small drop in the ratio starting from mid

central to central Au-Au collisions. The p/p ratio is similar at 130 GeV and 200

GeV, but shows significant drop at 62.4 GeV. The p/p ratio is flat at higher collision

energies although there seems to be a hint of a drop in 200 GeV Au-Au as well. More
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pronounced drop of the ratio toward central collisions at 62.4 GeV, is consistent with

larger stopping at central collisions.

The K−/K+ and p/p ratios are shown in Fig. 7.15 and Fig. 7.15 as a function

of
√
SNN . Lower energy data points (AGS, SPS) are from [?, 75, 78], RHIC points

are from [?,69,79,80] and the thermal model calculation is presented in [84]. Ratios

smoothly evolve from AGS to RHIC energies approaching 1. The π−/π+ ratios are

flat from SPS to RHIC energies [84], although not plotted here. The connection

between kaon and proton/anitproton production is clearly seen in Fig. 7.14, where

K−/K+ ratios are plotted as a function of p/p for the energies and rapidities cited

in [85]. Implication of this behavior to the chemical freeze-out will be discussed in

details in Sec. 7.5.

Fig 7.17 shows the unlike particle ratios K−/π− and p/π− in pp, dAu and Au-Au

collisions as a function of charged hadron multiplicity and dN/dy/S. These ratios

represent the bulk strangeness and baryon production. Strangeness enhancement in

heavy-ion collisions with respect to pp collisions is considered one of the possible

signatures of the QGP formation. In elementary collisions (eg. pp) or in hadron

gas (heavy-ion collisions without QGP formation) strangeness production leads to

strange particle (hadron) pairs requiring large amount of energy. In QGP strange

quark - antiquark pair can be produced which are energetically favored with respect

to strange hadron pair production. Most of the higher mass antibaryons decay

into antiprotons, therefore the p/π− ratio is a good measure of overall antibaryon

production.

The ratios: K−/π− and p/π− gradually increase from pp to peripheral, mid-

peripheral Au-Au collisions and saturate in mid-central and central collisions. Kaon

production in central Au-Au collisions is increased by ≈ 50 % with respect to min-

imum bias pp collisions. Ratios at 62.4 GeV are lower than at 200 GeV and p/π−

show more pronounced drop at 62.4 GeV than at 200 GeV.

Fig. 7.18 and Fig. 7.19 show the K+/π+ and K−/π− ratios from AGS [81–

83] to SPS to RHIC energies. K+/π+ shows a sharp increase at lower energies
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and drops at energies higher than ∼ 10 GeV, whereas K−/π− ratios monotonically

increase. Behavior of the K/π ratios can be explained with the different energy

dependence of the kaon production rate and the net baryon density. The 62.4 GeV

STAR measurements follow the smooth trend for both ratios and are close to the

thermal model description [84].

Systematic uncertainties on particle ratios come from those on the extrapolated

yields using the various functional forms discussed above. The systematic uncertain-

ties on the extrapolated yields are somewhat correlated, thus are partially canceled

in the ratios.

7.5 Freeze-out properties

In this section we present the freeze-out properties of the various systems, treating

the chemical and kinetic freeze-outs separately. Chemical freeze-out is investigated

in terms of thermal models [84, 86, 87]. Kinetic freeze-out happens later than the

chemical freeze-out, meanwhile the system expands and cools. Kinetic freeze-out is

described by the blast-wave model fits to the measured data.

7.5.1 Chemical and kinetic freeze-out

In our framework the measured particle ratios are fitted with a four parameter

chemical freeze-out model, where the free parameters are the chemical freeze-out

temperature (Tchem), the baryon and strangeness chemical potentials (µB, µS) and

the strangeness suppression factor (γS). The following bulk ratios are included in

the fit: π+/π−, K−/K+, p/p, K−/π−, p/π−. The fit is performed for each collision

systems and each multiplicity/centrality class.

The first observation is the independence of the chemical freeze-out tempera-

ture of collision system and multiplicity/centrality. In each system investigated the

chemical freeze-out temperature is around ≈ 150 - 156 MeV which is close to the

LQCD calculation for three flavors (154 MeV ± 8 MeV) [19]. For Au-Au collisions
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at the two investigated collision energies the chemical freeze-out temperatures are

the same. Chemical freeze-out temperature as a function of
√
SNN shows a sharp

rise in the AGS range and seems to be flat from SPS to RHIC (starting at ∼ 10

GeV) [84].

Further chemical freeze-out parameters can be extracted, such as the strangeness

suppression factor, shown in Fig. 7.22. In central Au-Au collisions γS approaches

0.9 from the pp value ∼ 0.5. This infers that the system created in the collision

evolves toward chemical equilibrium even for the strangeness sector. Perfect chemical

equilibrium is achieved if γS = 1. Including only charged kaons in the chemical model

fit leads to a smaller saturation value of the strangeness suppression factor. Chemical

model fits including strange baryons (Λ,Λ1520,Ξ,Ω) and mesons (φ,K∗, KS) with the

bulk particles measured leads to γS ≈ 1 in central Au-Au collision at RHIC energies.

As shown in Fig. 7.14, K−/K+ ratios are plotted as a function of p/p. From naive

quark counting the correlation between these ratios is expected to exert a power law

relation with an exponent of 1/3, but the measured ratios seem to differ from that as

shown in Fig. 7.14. Chemical model fits at fixed chemical freeze-out temperature (170

MeV) are able to describe the measured correlation with varying baryon chemical

potential [88]. The good description of the correlation between these particle ratios

infers chemical equilibrium in the measured collisions in a rapidity range |y| <∼ 3.0.

Finally, the baryon chemical potential is presented in Fig. 7.23, which can char-

acterize the transparency and/or the net baryon content of the collision zone. At

200 GeV the baryon chemical potential is small ∼ 10 - 22 MeV, but increases to ∼
40 - 80 MeV at 62.4 GeV. The observed decreasing trend of p ratios at 62.4 and 200

GeV are due to the increasing stopping toward central Au-Au collisions.

Kinetic freeze-out parameters are extracted from the blast-wave model fits. Fig-

ure 7.20 summarizes the extracted freeze-out temperatures for 200 GeV pp, dAu

and Au-Au [72] collisions and for Au-Au collisions at 62.4 GeV. As opposed to the

chemical freeze-out temperature, the kinetic freeze-out temperature shows strong

evolution with collision system and multiplicity/centrality. At very low multiplic-
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ity pp collisions kinetic freeze-out temperature is close to the chemical freeze-out

temperature. As the multiplicity increases kinetic freeze-out temperature decreases.

This trend continues through dAu centralities and through the Au-Au centralities.

Au-Au collisions at 62.4 GeV and 200 GeV show similar freeze-out.

The apparent average transverse flow velocity shows the same increasing trend,

as depicted in Fig. 7.21. In Au-Au collisions the average transverse flow velocity is

interpreted as the result of collective expansion of the system created at collision.

In pp and dAu collisions the system is considered too small for expansion, but with

increasing multiplicity in pp and increasing centrality in dAu due to the azimuthally

averaged spectra through several collisions, (mini)jets and the increasing contribu-

tion from kT broadening can mimic the expected collective behavior, which can be

measured on the event-by-event basis in Au-Au collisions but not in pp or dAu.

Despite the different physical processes the extracted average flow velocity evolves

smoothly. Now, concentrating on Au-Au collision only, the decreasing/increasing

trend of the kinetic freeze-out temperature/average flow velocity is the same within

errors at 62.4 GeV and at 200 GeV. The magnitude of the freeze-out parameters seem

to be only governed by the charged particle multiplicity. This might suggest that a

given collision system (in our case Au-Au) above the expected phase transition cen-

ter of mass energy (independent of the initial conditions, eg. baryon content of the

collision zone, but not the initial energy density) follows a general evolution: after

chemical freeze-out the system expands and cools to kinetic freeze-out determined

by the charged particle multiplicity (i.e. the initial energy density of the collision).

It would be an interesting continuation of this work with improved statistics of

the pp and dAu data to study the freeze-out properties of high multiplicity but not

jet like events. That might lead to a better understanding of gluon saturation in

high energy collisions. Unfortunately this kind of event selection with the current

statistics of 200 GeV pp and 200 GeV dAu data is not possible.

Over the last decades several experiments have measured the freeze-out proper-

ties. Fig. 7.24 shows the excitation function of the chemical freeze-out temperature
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(top left), the baryon chemical potential (bottom left), the kinetic freeze-out tem-

perature (top right) and the average transverse flow velocity (bottom right) from a

collection of experimental and theoretical works for central Pb-Pb/Au-Au collisions.

A collection of numerical values can be found in [84] and references therein.

Each freeze-out parameter follows a smooth trend with increasing collision energy,

and the 62.4 GeV Au-Au measurements fit well in this trend. A distinct change

can be observed at ∼ 10 GeV for the chemical and kinetic freeze-out temperatures

and for the average transverse flow velocity. The chemical freeze-out temperature

seems to be independent of the increasing collision energy above ∼ 10 GeV. The

kinetic freeze-out temperature shows a slight decrease and the average transverse

flow velocity shows a monotonic increase ∼ 10 GeV. The baryon chemical potential

rapidly drops from ∼ 400 MeV at 10 GeV to ∼ 10 - 20 MeV at 200 GeV, reaching

the nearly transparent regime of heavy-ion collisions.

Systematic uncertainties on the kinetic freeze-out parameters are also assessed by

excluding the kaon spectra or the proton spectra from the Blast-wave fit. An overall

10% uncertainty can be applied on the kinetic freeze-out temperature and 8% on the

average transverse flow velocity. The errors on the chemical freeze-out parameters

include the systematic error from the particle ratios, can be found in [72].



115

dN/dy
-110 1 10 210 310

Sγ

0

0.5

1
pp (200 GeV)
pp MB (200 GeV)
dAu (200 GeV)
dAu MB (200 GeV)
Au-Au (62.4 GeV)
Au-Au (200 GeV)

)-1 (fmdN/dy/S
0.5 1 1.5 2 2.5

Sγ

0

0.2

0.4

0.6

0.8

1 pp MB (200 GeV)

dAu (200 GeV)

Au-Au (62.4 GeV)

Au-Au (200 GeV)

Figure 7.22. Strangeness suppression factor extracted from chemical
model fit in 200 GeV pp, dAu and Au-Au and 62.4 GeV Au-Au
collisions corrected dN/dy and

√

dN/dy/S.



116

dN/dy
-110 1 10 210 310

 (
M

eV
)

Bµ

20

40

60

80

100
pp (200 GeV)
pp MB (200 GeV)
dAu (200 GeV)
dAu MB (200 GeV)
Au-Au (62.4 GeV)
Au-Au (200 GeV)

)-1 (fmdN/dy/S
0.5 1 1.5 2 2.5

 (
M

eV
)

Bµ

10

20

30

40

50

60

70

80

90

100
pp MB (200 GeV)

dAu (200 GeV)

Au-Au (62.4 GeV)

Au-Au (200 GeV)

Figure 7.23. Baryon chemical potential extracted from chemical
model fit in 200 GeV pp, dAu and Au-Au and 62.4 GeV Au-Au
collisions corrected dN/dy and

√

dN/dy/S.



117

 (GeV)NNS
1 10 210 310

 (
M

eV
)

ch
em

T

0

50

100

150

200

SIS

AGS

SPS

STAR 19.6 GeV

STAR 62.4 GeV

RHIC 130 GeV

RHIC 200 GeV

STAR 200 GeV

Stat. Mod.

 (GeV)NNS
1 10 210 310

 (
M

eV
)

ki
n

T

0

50

100

150

200

250

FOPI

EOS

E866

NA44

NA49

STAR 19.6 GeV

STAR 62.4 GeV

STAR 200 GeV

 (GeV)NNS
1 10 210 310

 (
M

eV
)

Bµ

0

200

400

600

800 SIS

AGS

SPS

STAR 19.6 GeV

STAR 62.4 GeV

RHIC 130 GeV

RHIC 200 GeV

STAR 200 GeV

Stat. Mod.

 (GeV)S
1 10 210 310

>β<
0

0.2

0.4

0.6

0.8

1

FOPI

EOS

E866

NA44

NA49

STAR 19.6 GeV

STAR 62.4 GeV

STAR 200 GeV

Figure 7.24. Excitation function of chemical and kinetic freeze-out parameters in central heavy-ion collisions.
See text for references.



118

7.6 Effect of resonance decays on the kinetic freeze-out temperature

7.6.1 Extraction of freeze-out properties in heavy-ion collisions

Kinetic freeze-out parameters are extracted from low momentum identified parti-

cle spectra, where the effect of the collective flow field on the particles is the strongest.

However, as long standing common knowledge, the low momentum (especially bulk

particles: π, K, p and p) particles carry significant contribution from resonance

particle decays.

One possible way to reduce the effect of resonance contribution is to treat the

identified particle spectra as primordial and exclude the low momentum part (pT <

475 MeV) of the pion spectra. The kinetic freeze-out temperature extracted this

way is significantly lower than the chemical freeze-out temperature in central Au-

Au collisions at RHIC energies (except 20 GeV). There are arguments to include

all resonance particles in the description of the freeze-out, hence the chemical and

kinetic freeze-out can be described with a single freeze-out temperature [89], though

chemical models generally fail to reproduce the multi strange particle ratios, which

is the input for the single freeze-out model. Single freeze-out models can describe

identified particle spectra in the level of 20-30 %, which is significant if we consider

the low momentum part of the spectra which contributes in the order of ∼ 90% to

the total particle yield.

7.6.2 Motivation of the study

Our goal is to provide a good description of the measured identified particle spec-

tra (π±, K±, p and p) in central (0-5%) 200 GeV Au-Au collisions and investigate

the effect of resonances on the extracted kientic freeze-out parameters. This rigorous

study is carried out with the help of a model combined from chemical and thermal

freeze-out models, in which primordial and resonance spectra can be calculated and

fitted to the measured identified particle spectra and the freeze-out properties. Ki-
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netic freeze-out temperature, the average transverse flow velocity and the shape of

the flow distribution can be extracted.

7.6.3 Model description

STAR has measured a wide variety of particles in 200 GeV Au-Au collisions: ρ,

ω, η, η′, K∗0, K∗±, φ and Λ, ∆, Σ, Ξ, Λ1520, Σ1385, Ω. The experimental knowledge

of strange particle yields can constrain the resonance ratios in the chemical model

description. The relative proportions of particles and resonances in our study are

determined by chemical freeze-out parameters that are fixed. We used Tch= 160

MeV, µB= 22 MeV, µS= 1.4 MeV, and γ=0.98, which were obtained from the fit to

the identified particle spectra (π±, K±, p and p) in central (0-5%) 200 GeV Au-Au

collisions.

The kinetic component of our model is based on the model by Wiedemann and

Heinz [90], which calculates the pT spectra of thermal particles and decay products

from resonances in an analytical framework based on the source function of the

collision. This model has been modified to accommodate the assumptions in the

data description [72]:

1. We assumed two distinct freeze-out temperatures. Chemical freeze-out is fixed

by the measured particle ratios. Kinetic freeze-out temperature is a free para-

meter which can be extracted from the model fit to the measured spectra. The

original model [90] uses single temperature and sets the chemical potential to

zero.

2. We included a more extensive list of resonances, namely: ρ, ω, η, η′, K∗0, K∗±,

φ and Λ, ∆, Σ, Ξ, Λ1520, Σ1385, Ω. Each charged decay mode of the resonance

particles is taken into account according to the Particle Data Book [61].

3. In the original code [90] the Gaussian source function is implemented, which

is changed to box profile to work with the flow profile: β = βS (r/R)n, as in



120

the data description [72]. This assumption is valid in the mid-rapidity region

at RHIC for 200 GeV Au-Au collisions.

4. Constant dN/dy distributions are implemented instead of Gaussian as in the

original code [90]. Rapidity distributions are needed for resonances, which can

decay into particles at mid-rapidity where our measurements are made.

Within this modified kinetic freeze-out model primordial and resonance spectra

are calculated at the same kinetic freeze-out temperature. To limit the necessary

computing time required by the calculation, for each spectrum only spectra points

between 0.0 GeV/c < pT < 5.0 GeV/c are calculated with 50 MeV steps. This

gives a good estimate of the spectrum shape, which is necessary to assign proper

yield to the spectrum. Spectra of resonance decay daughters are calculated through

each decay they undergo and are combined according to the proper spin, isospin

degeneracies and decay branching ratios.

7.6.4 Calculated spectra

The calculated particle spectra of π−, K− and p are shown in Fig. 7.25 (left pan-

els). Since the measured pion spectra are corrected for weak decays, the calculated

inclusive pion spectra do not contain weak decay pions. Resonance contributions are

labeled by the initial resonance particle, e.g. a π emerging from the η′ → η → π

decays is labeled as πη′ and summed over each possible decay mode of η′. The calcu-

lated inclusive pion spectra include contributions from Λ1520 which are not plotted.

The right panels of Fig. 7.25 show the resonance contributions to the inclusive spectra

relative to the primordial one.

The low pT pion enhancement is the counter play of ρ, ω and η; at higher pT the

ρ contribution dominates. The inclusive kaon and antiproton spectra do not show

significant changes in the spectral shapes compared to the primordial ones. The

largest contributions to the inclusive kaon spectra are from K∗0 and K∗− and the

largest contributions to the inclusive p and p spectra are from Λ, ∆, and Σ’s.
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Figure 7.25. Calculated primordial and resonance decay daughter
spectra and their ratio with respect to the thermal production in
0-5% Au-Au collisions at 200 GeV. Spectra are calculated with the
following parameters: Tkin = 89 MeV, β = 0.59, n = 0.82.

One should note here that different particles freeze-out at different temperatures,

which would alter the final calculated inclusive spectrum. Within our model it is

not possible to accommodate individual kinetic freeze-out temperatures, but would

be an interesting task for model calculations such as RQMD or other parton cascade

models.
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Figure 7.26. Top left panel: Fit of the calculated spectra to the mea-
sured ones in top 5% central Au-Au collisions at 200 GeV [72]. Four
calculated spectra are shown for π− (upper curves): including reso-
nances with three different ρ contributions and excluding resonances.
Only two calculated curves are shown for K− (middle curves) and
p̄ (lower curves): including resonances with 100% ρ and excluding
resonances. Other panels: data / calculation ratios. Error bars are
from statistical and point-to-point systematic errors on the data, and
are shown for only one set of the data points.

7.6.5 Short lived resonances and fit results

It is an open question what flow velocity and temperature should be assigned to

the short lived resonances, such as ρ and ∆. These resonance decays are expected
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to be constantly regenerated during the system evolution, since their life-times are

shorter (cτρ = 1.3 fm, cτ∆ = 1.6 fm) than the expected system evolution time (cτ ≈
10 fm).

Processes of ρ → ππ and ππ → ρ, for example, constantly occur along the

dynamical evolution of the system. Thus, it is reasonable to expect that the final

ρ decay pions carry the same flow information as the primordial pions do. In other

words, the regenerated ρ gain negligible flow velocity during its short life span except

the inherited flow from the two resonant pions.

To gain better insights, three cases are considered for ρ, which gives the largest

contribution to the measured π spectra:

1. The ρ decay pions have the same pT spectra shape as the primordial pions.

2. The ρ acquires flow as given by kinetic freeze-out temperature and transverse

flow velocity, and the decay pions are calculated from decay kinematics.

3. Half of the ρ contribution is taken like in (1) and the other half as in (2).

Case (2) has the largest flow for decay pions because the ρ, being heavy, acquires

flow more efficiently than pions.

In the fit of the calculated spectra to the measured the free parameters are the

kinetic freeze-out temperature (Tkin), the average transverse flow velocity (β) and

the exponent flow profile (n). Two different fit methods are implemented based on

the Minuit package of the ROOT [91]. In the first fit, finite parameter values are

used with fixed n = 0.82; results are summarized in Table 7.1. In the second method

all three parameter values are set to free and to be able to vary with 6 decimal

point precision; results are summarized in Table 7.2. The first method allows a

fast mapping and minimization to find the best fit for the Tkin, β. The second

method provides a better estimate of the extracted parameters and the errors. In

the minimization the point-to-point systematic errors on the measured spectra points

are taken into account Due to the conservatively estimated point-to-point systematic

errors, the extracted χ2/ndf values are below unity for the best fits. Table 7.1 and
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Table 7.1
Extracted kinetic freeze-out parameters and fit χ2 in 0-5% central
Au-Au collisions at 200 GeV. The flow profile n parameter is fixed
to be 0.82.

Set Tkin (MeV ) 〈β〉 χ2/ndf

No resonances 86.8+0.7
−0.6 0.595+0.002

−0.003 0.26

ρ 0 % 94.6+0.9
−1.0 0.603+0.004

−0.002 0.37

ρ 50 % 87.4+0.9
−1.1 0.605+0.002

−0.002 0.45

ρ 100 % 77.2+0.8
−0.9 0.604+0.004

−0.003 0.60

Table 7.2
Extracted kinetic freeze-out parameters and fit χ2 in 0-5% central
Au-Au collisions at 200 GeV. All three parameters are free.

Set Tkin (MeV ) 〈β〉 n χ2/ndf

No resonances 87.455 ± 2.545 0.604 ± 0.003 0.835 ± 0.020 0.695

ρ 0 % 91.350 ± 1.350 0.619 ± 0.001 0.820 ± 0.001 0.788

ρ 50 % 87.555 ± 0.886 0.598 ± 0.003 0.820 ± 0.008 0.424

ρ 100 % 78.287 ± 0.966 0.599 ± 0.005 0.801 ± 0.019 0.558
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Figure 7.27. Fine mapping of χ2 as a function of Tkin and 〈β〉 and n
for the no resonances case. Number of degrees of freedom is NDF =
75. The χ2 distributions are similar for the resonance cases.
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Table 7.2 show the fit results for the three short lived resonance cases and for the two

fit methods. Also listed are the fit results without including resonances. The spectral

shapes are found to be less sensitive to the kinetic freeze-out temperature than the

flow velocity. Fig. 7.27 shows, as an example, the fitted χ2 versus fit parameters

Tkin, 〈β〉 and n. It can be seen from the figure that 〈β〉 is better constrained than

Tkin.

Fig. 7.26 shows the fits of the calculated inclusive spectra to the measured ones.

Fits are performed to the six measured spectra simultaneously, but only negatively

charged particles are shown. For K− and p, results from the 100 % ρ case fit and the

fit excluding resonances are plotted, while all fits are plotted for pions. In the case

of 100% ρ, the calculated spectrum starts to deviate from the data above pT ∼ 400

MeV. In the case of 0% ρ, below pT ∼ 400 MeV the calculated inclusive spectrum is

enhanced by ω and η, which become more important without the ρ. The model, with

all the three cases of ρ contributions, seems to describe the data well. Nonetheless,

the fitted Tkin values with all three cases of ρ contributions seem to agree with that

obtained without including resonances within the systematic error of ± 10 MeV

[72]. In other words, resonance decays appear to have no significant effect on the

extracted kinetic freeze-out parameters as shown in Table 7.1 and Table 7.2. This is

primarily due to the limited pT ranges of our data where resonance decay products

have more or less similar spectral shapes as the primordial particles do.

Table 7.3
Extracted kinetic freeze-out parameters and fit χ2 in minimum bias
pp collisions at 200 GeV. All three parameters are free.

Set Tkin (MeV ) 〈β〉 n χ2/ndf

No resonances 119.497 ± 1.503 0.298 ± 0.027 2.475 ± 1.163 1.395

ρ 0 % 121.858 ± 0.858 0.345 ± 0.002 1.190 ± 0.034 4.400

ρ 50 % 122.154 ± 1.154 0.350 ± 0.010 0.996 ± 0.312 2.464

ρ 100 % 117.813 ± 3.187 0.293 ± 0.012 3.124 ± 0.579 1.061
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Figure 7.28. Calculated primordial and resonance decay daughter
spectra and their ratio with respect to the thermal production in
200 GeV pp collisions. Spectra are calculated with the following
parameters: Tkin = 118 MeV, β = 0.29 and n = 3.1.

We also fitted the spectra data with a single, fixed kinetic freeze-out tempera-

ture Tkin = Tch = 160 MeV including resonances and with 100 % ρ contribution.

The fitted 〈β〉 is 0.520+0.001
−0.002 with χ2/NDF=19.56. A single temperature scenario is

therefore ruled out by the data.
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Figure 7.29. Top left panel: Fit of the calculated spectra to the
measured ones in minimum bias pp collisions at 200 GeV [72]. Four
calculated spectra are shown for π− (upper curves): including reso-
nances with three different ρ contributions and excluding resonances.
Only two calculated curves are shown for K− (middle curves) and
p̄ (lower curves): including resonances with 100% ρ and excluding
resonances. Other panels: data / calculation ratios. Error bars are
from statistical and point-to-point systematic errors on the data, and
are shown for only one set of the data points.

The χ2/NDF is smaller than unity because we included in the fit the point-to-

point systematic errors (dominate over statistical ones), which were estimated on

the conservative side and might not be completely random. If we scale the χ2/NDF
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Table 7.4
Extracted kinetic freeze-out parameters and fit χ2 in minimum bias
pp collisions at 200 GeV. The n parameter is fixed to be 2.0.

Set Tkin (MeV ) 〈β〉 n χ2/ndf

No resonances 122.237 ± 1.237 0.292 ± 0.003 2.000 ± 0.000 1.306

ρ 0 % 121.560 ± 0.560 0.321 ± 0.002 2.000 ± 0.000 3.134

ρ 50 % 121.974 ± 0.974 0.320 ± 0.003 2.000 ± 0.000 1.549

ρ 100 % 119.853 ± 1.147 0.302 ± 0.003 2.000 ± 0.000 1.826

such that the minimum is unity, then we get somewhat smaller statistical errors on

the fit parameters.

7.7 Model fit to 200 GeV pp collisions

It was suggested that resonance contribution to the low momentum bulk particle

spectra can be more significant in pp collision than in central Au-Au collisions. The

same method we presented earlier can be repeated for minimum bias pp collisions

as well.

Fig. 7.28 shows the calculated spectra for negative particles in minimum bias

pp collisons at 200 GeV. The inclusive calculated kaon and antiproton spectra are

slightly modified compared to the primordial ones. The inclusive calculated pion

spectrum is less modified compared to the central Au-Au case. The largest contri-

bution can be attributed to the ρ meson. The η and ω mesons are less significant

than in central Au-Au collisions at 200 GeV.

Fig. 7.29 shows the fit to the measured particle spectra in 200 GeV pp collisions.

Fits are performed simultaneously to the six particle spectra but only the negatives

are shown. The calculated spectra can describe the measured particle spectra well

in the measured transverse momentum region. The numerical results are listed in

Tab. 7.3 and in Tab. 7.4.
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In summary, we do not observe significant modification in the extracted kinetic

freeze-out parameters including resonances in the measured transverse momentum

range for both minimum bias pp and central (0 - 5%) Au-Au collisions.



130

7.8 Conclusions and Summary

In this thesis multiplicity/centrality dependent identified particle spectra of π±,

K±, p and p are presented from
√
SNN = 200 GeV pp, dAu and

√
SNN = 62.4

GeV Au-Au collisions. Measurements were carried out by the STAR experiment at

RHIC. The main detector used in the measurements is the TPC. Charged particles

are identified by the specific energy loss in the TPC gas with the dE/dx technique.

Transverse momentum spectra of kaons and protons/antiprotons show hardening

with increasing multiplicity/centrality. The average transverse momenta in 62.4 and

200 GeV Au-Au collisions follow the same trend and seem to scale with multiplicity.

The average transverse momenta of pions are flat over wide range of multiplicity,

and show monotonic increase those of kaons, protons/antiprotons. The average

transverse momenta as a function of the multiplicity density per transverse area

(
√

dN/dy/S) are the same within errors for 62.4 and 200 GeV Au-Au collisions.

The average transverse momenta of kaons and protons/antiprotons in 200 GeV pp

and dAu collision show departing trend from that of 62.4 and 200 GeV Au-Au. The

average transverse momenta of kaons and protons/antiprotons in 200 GeV pp and

dAu collision are larger than in 200 GeV Au-Au collisions at similar multiplicities.

The average transverse momenta of pions show almost no dependence.

Particle/antiparticle ratios are independent of multiplicity/centrality in 200 GeV

collisions. The p/p ratio shows significant decrease from peripheral to central 62.4

GeV Au-Au collisions. In 200 GeV this drop is not well pronounced. In 62.4 GeV

Au-Au collisions nuclear stopping increases compared to the almost transparent 200

GeV Au-Au collisions and the amount of net baryons present in the collisions zone

is significant.

Increase in the nuclear stopping is also reflected in the decrease of the K−/K+

ratio at 62.4 GeV in contrast to 200 GeV Au-Au collisions. The connection of

these particle ratios (K−/K+ versus p/p and others) is well reproduced by chemical
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model calculations over wide ranges of collision energy, centrality, rapidity. This

might indicate (local) equilibration of the system.

The K−/π− ratios at RHIC energies (62.4 GeV, 130 GeV, 200 GeV) from mid-

peripheral to central Au-Au collisions are independent of centrality, while in lower

energies they show a steep rise. This implies that strangeness production is the same

at these RHIC energies.

Chemical freeze-out properties are investigated from the measured particle ratios.

The chemical freeze-out temperature is ∼ 150 - 156 MeV (which is close to the lattice

QCD calculation with three flavors: 154 ± 8 MeV) and is independent of multiplicity

/ centrality. The baryon chemical potential is ∼ 7 - 18 MeV at 200 GeV and ∼ 40

- 75 MeV at 62.4 GeV. The ad-hoc strangeness suppression factor increases from

0.5 at pp, dAu and saturates at mid-central, central Au-Au collisions at 0.85. The

strangeness suppression factor shows the same trend at 62.4 and at 200 GeV.

The kinetic freeze-out properties are extracted from simultaneous blast-wave

model fits to the π±, K±, p and p spectra. The kinetic freeze-out temperature

decreases with increasing multiplicity/centrality while the average transverse flow

velocity increases.

Investigation of the excitation functions of the freeze-out parameters indicate

that above
√
SNN ∼10 GeV further increase in the collision energy only creates a

larger flow, but the chemical freeze-out properties are the same. Particle production

is governed by the baryon chemical potential as shown from the K−/K+ vs. p/p

correlation. The kinetic freeze-out properties of the system are determined by the

collision energy and centrality.

Since the bulk π±, K±, p and p spectra carry contribution from resonance de-

cays, the kinetic freeze-out properties are investigated including resonance particles

in the blast-wave model calculation. The inclusive π±, K±, p and p spectra are

calculated from thermal and blast-wave models with resonances for central (0-5%)

Au-Au collisions and for Minimum Bias pp collisions at 200 GeV. The extracted

kinetic freeze-out temperature and the average transverse flow velocity do not show
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significant effect from resonances. This is because in the measured STAR transverse

momentum range resonance decays do not significantly alter the shapes of the final

inclusive spectra.

The main contributions of this thesis to the search of the Quark Gluon Plasma

are the following. From the measured particle ratios, there is a strong indication

that the chemical freeze-out happens close to the universal hadronization or phase

transition. The chemical freeze-out temperature is unique and independent of the

collision energy from the top SPS to RHIC energies. Kinetic freeze-out happens

later; the kinetic freeze-out temperature and the average flow velocity extracted

from the identified particle spectral shapes suggest significant cooling and expansion

from chemical to kinetic freeze-out. Rigorous investigation of the effect of resonances

on the kinetic freeze-out parameters shows that, given the STAR measured trans-

verse momentum range, resonance decays have no significant effect on the extracted

kinetic freeze-out parameters. This measurement also rules out the single freeze-out

scenario.
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A. Kinematic variables

We introduce the basic kinetic variables used in high energy heavy-ion collisions.

First, we use a Cartesian coordinate system; the z direction of the coordinate

system in the laboratory frame is set to be parallel to the beam direction, and

the x and y components are perpendicular to the beam direction (they span the

transverse plane). The azimuthal angle φ is measured in the transverse plane with

respect to the x axis.

The three particle momentum can be decomposed to longitudinal (pz) component

and transverse component:

pT =
√

p2
x + p2

y. (A.1)

The transverse mass is defined as:

mT =
√

m2
0 + p2

T (A.2)

where m0 is the rest mass of the particle. Energy of a given particle is defined

through the relativistic formula:

E =
√

pµpµ +m2 =
√

m2
T + p2

z. (A.3)

From the measured energy of the particle and the measured momentum we can derive

two useful quantities: the rapidity and the pseudo-rapidity variables. Rapidity is

defined as:

y =
1

2

E + pz

E − pz

, (A.4)

and the pseudorapidity is defined as:

η = − ln(tan(θ/2)). (A.5)

The differential invariant yield section is defined as the number of particles in a

phase space segment, which is commonly described in cylindrical coordinates.



140

E
d3N

dp3
=

d3N

pTdpTdφdy
=

d3N

mTdmTdφdy
. (A.6)

In our studies we investigate the azimuthally averaged particle spectra, hence the

invariant cross section can be written as:

E
d3N

dp3
=

d3N

2πpTdpTdy
=

d3N

2πmTdmTdy
. (A.7)

Various fitting functions are used to fit the invariant cross section and extract

particle yields and spectra properties. Properties of pion spectra are extracted with

the Bose - Einstein function:

E
d3N

dp3
∝ 1

emT /T − 1
. (A.8)

To estimate the systematic uncertainties two other function forms are used to fit the

particle spectra, the mT exponential function:

E
d3N

dp3
∝ e−mT /T , (A.9)

and the Boltzmann function:

E
d3N

dp3
∝ mT e

−mT /T . (A.10)
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B. Extraction of yield
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Figure B.1. Gaussian fits to the z distribution of pions in 200 GeV pp collisions.
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Figure B.2. Gaussian fits to the z distribution of kaons in 200 GeV pp collisions.
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Figure B.3. Gaussian fits to the z distribution of antiprotons in 200 GeV pp collisions.
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Table C.1
Extrapolated average transverse momenta, 〈p⊥〉 in GeV/c2, of identified particles for various collision sys-
tems and centralities. Errors are the quadratic sum of statistical and systematic errors, but dominated by
systematic errors.

System Centrality π− π+ K− K+ p p

min-bias 0.35 ± 0.02 0.35 ± 0.02 0.50 ± 0.03 0.50 ± 0.03 0.65 ± 0.03 0.65 ± 0.03

bin 1 0.36 ± 0.02 0.36 ± 0.02 0.46 ± 0.02 0.46 ± 0.02 0.55 ± 0.03 0.55 ± 0.03

pp bin 2 0.35 ± 0.02 0.35 ± 0.02 0.47 ± 0.02 0.47 ± 0.02 0.58 ± 0.03 0.58 ± 0.03

200 GeV bin 3 0.35 ± 0.02 0.35 ± 0.02 0.50 ± 0.03 0.51 ± 0.03 0.65 ± 0.03 0.65 ± 0.03

bin 4 0.35 ± 0.02 0.35 ± 0.02 0.53 ± 0.03 0.53 ± 0.03 0.69 ± 0.03 0.70 ± 0.04

bin 5 0.36 ± 0.02 0.36 ± 0.02 0.55 ± 0.03 0.55 ± 0.03 0.74 ± 0.04 0.75 ± 0.04

min-bias 0.37 ± 0.02 0.37 ± 0.02 0.59 ± 0.03 0.59 ± 0.03 0.82 ± 0.05 0.83 ± 0.05

d-Au 40 - 100% 0.36 ± 0.02 0.36 ± 0.02 0.57 ± 0.05 0.57 ± 0.05 0.75 ± 0.08 0.76 ± 0.08

200 GeV 20 - 40% 0.36 ± 0.02 0.37 ± 0.02 0.58 ± 0.03 0.58 ± 0.03 0.81 ± 0.04 0.81 ± 0.04

0 - 20% 0.38 ± 0.02 0.38 ± 0.02 0.61 ± 0.03 0.62 ± 0.03 0.86 ± 0.04 0.86 ± 0.04

70 - 80% 0.35 ± 0.02 0.36 ± 0.02 0.51 ± 0.03 0.51 ± 0.03 0.68 ± 0.03 0.67 ± 0.03

60 - 70% 0.37 ± 0.02 0.36 ± 0.02 0.53 ± 0.03 0.53 ± 0.03 0.71 ± 0.04 0.71 ± 0.04

50 - 60% 0.38 ± 0.02 0.38 ± 0.02 0.55 ± 0.03 0.55 ± 0.03 0.75 ± 0.04 0.74 ± 0.04

62.4 GeV 40 - 50% 0.39 ± 0.02 0.38 ± 0.02 0.58 ± 0.03 0.58 ± 0.03 0.80 ± 0.05 0.80 ± 0.05

30 - 40% 0.40 ± 0.02 0.39 ± 0.02 0.60 ± 0.04 0.60 ± 0.04 0.84 ± 0.05 0.84 ± 0.05

Au - Au 20 - 30% 0.40 ± 0.03 0.40 ± 0.03 0.62 ± 0.04 0.62 ± 0.04 0.88 ± 0.06 0.88 ± 0.06

10 - 20% 0.40 ± 0.03 0.40 ± 0.03 0.63 ± 0.05 0.63 ± 0.05 0.92 ± 0.07 0.91 ± 0.07

5 - 10% 0.40 ± 0.04 0.41 ± 0.04 0.64 ± 0.06 0.64 ± 0.06 0.94 ± 0.08 0.94 ± 0.08

0 - 5% 0.40 ± 0.04 0.41 ± 0.04 0.65 ± 0.07 0.65 ± 0.07 0.97 ± 0.10 0.97 ± 0.10
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Table C.2
Integrated multiplicity density, dN/dy, of identified particles for various collision systems and centralities.
Errors are the quadratic sum of statistical and systematic errors, but dominated by systematic errors.

System Centrality π− π+ K− K+ p p

min-bias 1.46 ± 0.10 1.44 ± 0.10 0.15 ± 0.01 0.15 ± 0.01 0.10 ± 0.01 0.11 ± 0.01

bin 1 0.33 ± 0.02 0.35 ± 0.02 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01

pp bin 2 1.29 ± 0.09 1.31 ± 0.09 0.13 ± 0.01 0.13 ± 0.01 0.09 ± 0.01 0.10 ± 0.01

200 GeV bin 3 2.23 ± 0.16 2.28 ± 0.16 0.23 ± 0.02 0.23 ± 0.03 0.16 ± 0.01 0.17 ± 0.01

bin 4 3.10 ± 0.22 3.15 ± 0.23 0.32 ± 0.02 0.32 ± 0.02 0.22 ± 0.02 0.25 ± 0.02

bin 5 4.28 ± 0.31 4.33 ± 0.31 0.44 ± 0.03 0.49 ± 0.04 0.32 ± 0.02 0.34 ± 0.02

min-bias 4.65 ± 0.34 4.65 ± 0.34 0.58 ± 0.04 0.59 ± 0.04 0.42 ± 0.03 0.47 ± 0.04

d-Au 40 - 100% 2.89 ± 0.21 2.87 ± 0.22 0.32 ± 0.03 0.36 ± 0.03 0.24 ± 0.02 0.28 ± 0.03

200 GeV 20 - 40% 6.06 ± 0.45 6.01 ± 0.44 0.75 ± 0.05 0.81 ± 0.06 0.56 ± 0.04 0.65 ± 0.05

0 - 20% 8.43 ± 0.62 8.49 ± 0.63 1.04 ± 0.07 1.19 ± 0.09 0.79 ± 0.06 0.93 ± 0.07

70 - 80% 7.77 ± 0.57 7.35 ± 0.54 0.80 ± 0.06 0.85 ± 0.06 0.51 ± 0.04 0.84 ± 0.06

60 - 70% 14.7 ± 1.1 14.9 ± 1.1 1.73 ± 0.13 1.93 ± 0.14 1.06 ± 0.08 1.82 ± 0.13

50 - 60% 26.8 ± 2.1 26.6 ± 1.9 3.27 ± 0.24 3.61 ± 0.27 1.86 ± 0.14 3.36 ± 0.25

62.4 GeV 40 - 50% 43.8 ± 3.4 43.2 ± 3.4 5.64 ± 0.43 6.58 ± 0.50 3.05 ± 0.23 5.68 ± 0.43

30 - 40% 67.5 ± 5.5 66.6 ± 5.4 8.78 ± 0.70 10.3 ± 0.8 4.64 ± 0.37 8.88 ± 0.70

Au - Au 20 - 30% 101 ± 9 98.9 ± 8.5 13.7 ± 1.2 15.6 ± 1.31 6.65 ± 0.65 12.9 ± 1.1

10 - 20% 146 ± 13 144 ± 14 19.7 ± 1.8 22.9 ± 2.1 9.12 ± 0.83 20.2 ± 1.9

5 - 10% 192 ± 20 191 ± 20 27.1 ± 2.8 31.2 ± 3.16 11.6 ± 1.2 28.8 ± 2.9

0 - 5% 237 ± 27 233 ± 26 32.6 ± 3.7 38.0 ± 4.3 13.8 ± 1.6 34.3 ± 3.8
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Table C.3
Chemical and kinetic freeze-out properties in 200 GeV pp, dAu and 62.4 GeV, 200 GeV Au-Au collisions.
Errors are statistical. See text for systematic error estimates.

System Centrality Tch (MeV) µB (MeV) µS (MeV) γS χ2/NDF Tkin (MeV) β n χ2/NDF

Minimum Bias 149.8±3.3 8.9±3.8 0.0±2.5 0.56±0.04 0.81 139.4±4.4 0.20±0.04 4.31±1.65 1.18

Bin1 151.8±3.5 13.9±4.0 -9.6±2.5 0.51±0.04 3.97 147.1±1.8 0.04±0.01 7.00±4.62 2.80

pp Bin2 149.2±3.3 10.3±3.9 0.9±2.5 0.55±0.04 1.02 147.8±3.9 0.12±0.03 2.00±4.27 1.41

200 GeV Bin3 150.1±3.3 7.1±3.9 0.4±2.5 0.57±0.05 1.39 140.3±7.1 0.17±0.05 6.01±3.76 0.98

Bin4 151.3±3.4 8.0±3.9 1.2±2.5 0.56±0.05 0.78 131.7±7.8 0.27±0.06 2.82±1.17 1.01

Bin5 151.4±3.5 7.5±3.9 -5.0±2.5 0.60±0.05 0.41 125.5±7.5 0.34±0.05 2.03±0.61 0.97

Minimum Bias 160.6±4.6 8.8±4.2 -0.7±2.7 0.70±0.06 0.01 121.1±6.8 0.39±0.01 1.90±0.27 1.94

dAu 40-100% 157.8±5.1 15.5±4.2 -3.6±2.6 0.64±0.06 0.13 134.9±7.8 0.30±0.03 2.78±0.52 1.59

200 GeV 20-40% 163.1±4.6 14.6±4.4 -2.5±2.7 0.70±0.06 0.16 113.4±6.9 0.39±0.02 1.82±0.14 1.18

0-20% 164.1±4.7 17.8±4.5 -5.8±2.7 0.72±0.06 0.16 121.4±8.1 0.40±0.02 1.83±0.14 1.18

70-80% 156.0±3.9 41.5±4.4 6.2±2.6 0.58±0.05 7.85 133.3±4.9 0.31±0.06 1.09±0.73 0.96

60-70% 160.5±4.4 46.4±4.8 4.4±2.7 0.68±0.06 0.27 131.2±4.9 0.37±0.06 0.60±0.48 0.75

50-60% 159.2±4.3 50.4±4.8 5.8±2.6 0.71±0.06 0.31 129.5±3.6 0.41±0.01 0.20±1.12 0.53

Au - Au 40-50% 159.4±4.5 54.2±4.9 4.2±2.6 0.77±0.07 0.39 121.9±4.8 0.44±0.03 0.76±0.18 0.57

30-40% 158.7±4.6 54.2±4.9 4.1±2.6 0.78±0.07 0.46 116.9±4.5 0.47±0.02 0.69±0.13 0.80

62.4 GeV 20-30% 156.1±4.6 53.4±4.8 6.1±2.6 0.81±0.08 1.26 113.0±4.5 0.49±0.02 0.78±0.09 1.54

10-20% 157.1±5.1 67.2±5.2 8.3±2.6 0.81±0.09 0.45 108.7±4.5 0.51±0.02 0.80±0.07 2.08

5-10% 157.7±5.6 75.3±5.5 11.3±2.6 0.85±0.10 0.14 102.4±4.3 0.53±0.01 0.84±0.05 1.79

0-5% 156.2±6.0 72.8±5.5 11.1±2.6 0.82±0.10 0.85 98.3±4.1 0.54±0.01 0.82±0.04 2.19
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Table C.4
Centralities in pp and d-Au collisions at 200 GeV and in Au-Au collisions at 62.4 GeV, 130 GeV, and 200
GeV. The uncorrected charged particle multiplicity dN raw

ch /dη for d-Au is measured in the FTPC within
−3.8 < η < −2.8, and for all other systems in the TPC within |η| < 0.5. The corrected charged particle
multiplicity 〈dNch/dη〉 are from the TPC within |η| < 0.5 for all collision systems.

Collision Centrality dNraw
ch /dη




dNraw
ch /dη

�

〈dNch/dη〉 〈dNch/dy〉

D
Nproj

part

E
〈Npart〉 〈Nbin〉 〈S〉 (fm2)

min-bias - 2.4 2.98±0.34 3.41±0.18 2 1 4.1±0.1

bin 1 0-1 0.6 0.71±0.55 0.79±0.04

pp bin 2 2-3 2.4 2.68±0.48 3.04±0.13

200 GeV bin 3 4-5 4.4 4.86±0.39 5.26±0.23

bin 4 6-7 6.4 7.02±0.48 7.32±0.33

bin 5 ≥ 8 9.6 10.6±0.9 10.2±0.4

min-bias - 10.2 10.2±0.68 11.4±0.6 1.62±0.02 3.9±0.2 3.5±0.2 6.7±0.4

d-Au 40-100% 0-9 6.2 6.23±0.34 6.96±0.37 1.46±0.02 2.2±0.1 1.7±0.1 6.7±0.2

200 GeV 20-40% 10-16 12.6 14.1±1.0 14.8±0.8 1.85±0.03 11.7±0.6 10.8±0.7 11.2±0.9

0-20% ≥17 17.6 19.9±1.6 20.8±1.0 1.96±0.01 15.2±0.9 15.1±1.1 13.5±0.9

70-80% 9-19 12.4 13.9±1.1 18.1±1.0 12.9±0.4 11.4±0.7 14.0±1.0

60-70% 20-37 26.8 29.1±2.2 36.1±1.9 25.3±0.8 26.7±1.8 22.8±1.4

50-60% 38-64 49.1 53.1±4.2 65.5±3.5 44.8±1.1 56.2±3.8 33.6±1.8

Au-Au 40-50% 65-101 81.0 87.2±7.1 108±6 72.4±1.9 107± 8 46.3±2.2

30-40% 102-153 125.2 135±11 167±9 110.4±2.1 192±15 60.9±2.7

62.4 GeV 20-30% 154-221 184.8 202±17 249±14 160.3±2.4 318±25 78.6±3.3

10-20% 222-312 263.6 292±25 361±22 226.4±3.2 508±41 101.0±4.1

5-10% 313-372 340.5 385±33 482±32 291.0±3.6 714±59 123.1±4.8

0-5% ≥373 411.8 472±41 588±42 346.7±2.9 914±79 143.8±5.2
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Table C.5
Measured and extrapolated contributions to the total yield for neg-
atively charged particles in 200 GeV pp, dAu and 62.4 GeV Au-Au
collisions. Bose-Einstein fit is used for pions and Blast-wave fit is
used for kaons and antiprotons.

measured extrapolated dN/dy

system dN/dy low p⊥ high p⊥

π, measured p⊥ range: 0.225-0.775 GeV/c

pp MB 61.6% 32.4% 6.0%

dAu MB 58.3% 30.6% 11.1%

Au-Au 80-70% 58.4% 31.6% 10.0%

Au-Au 40-30% 58.0% 28.3% 13.7%

Au-Au 5-0% 57.8% 27.7% 14.5%

K, measured p⊥ range: 0.225-0.725 GeV/c

pp MB 66.7% 14.8% 18.5%

dAu MB 60.5% 12.3% 27.2%

Au-Au 80-70% 58.9% 21.1% 20.0%

Au-Au 40-30% 56.8% 15.5% 27.7%

Au-Au 5-0% 54.2% 12.8% 33.0%

p, measured p⊥ range: 0.425-1.25 GeV/c

pp MB 58.5% 12.7% 28.8%

dAu MB 68.3% 17.2% 24.5%

Au-Au 80-70% 67.2% 11.5% 21.3%

Au-Au 40-30% 65.0% 12.8% 22.2%

Au-Au 5-0% 59.2% 9.4% 31.4%
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Table C.6
Invariant yields for π− and π+ at mid-rapidity in Minimum Bias
pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 2.10e+00 ± 7.34e-03 ± 2.10e-02 2.07e+00 ± 6.21e-03 ± 2.07e-02

2.75e-01 5.00e-02 1.57e+00 ± 4.87e-03 ± 1.57e-02 1.54e+00 ± 4.65e-03 ± 1.54e-02

3.25e-01 5.00e-02 1.17e+00 ± 3.80e-03 ± 1.17e-02 1.14e+00 ± 3.67e-03 ± 1.14e-02

3.75e-01 5.00e-02 8.70e-01 ± 3.04e-03 ± 8.70e-03 8.58e-01 ± 2.97e-03 ± 8.58e-03

4.25e-01 5.00e-02 6.52e-01 ± 2.47e-03 ± 6.52e-03 6.37e-01 ± 2.40e-03 ± 6.37e-03

4.75e-01 5.00e-02 4.86e-01 ± 2.01e-03 ± 4.86e-03 4.79e-01 ± 1.97e-03 ± 4.79e-03

5.25e-01 5.00e-02 3.64e-01 ± 1.66e-03 ± 3.64e-03 3.60e-01 ± 1.62e-03 ± 3.60e-03

5.75e-01 5.00e-02 2.76e-01 ± 1.38e-03 ± 5.52e-03 2.73e-01 ± 1.35e-03 ± 5.45e-03

6.25e-01 5.00e-02 2.09e-01 ± 1.16e-03 ± 4.19e-03 2.06e-01 ± 1.11e-03 ± 4.13e-03

6.75e-01 5.00e-02 1.59e-01 ± 1.03e-03 ± 4.77e-03 1.56e-01 ± 9.93e-04 ± 4.69e-03

7.25e-01 5.00e-02 1.22e-01 ± 9.65e-04 ± 3.65e-03 1.19e-01 ± 9.46e-04 ± 3.57e-03

7.75e-01 5.00e-02 9.20e-02 ± 1.33e-03 ± 2.76e-03 9.36e-02 ± 7.50e-04 ± 2.81e-03

Table C.7
Invariant yields for π− and π+ at mid-rapidity for the multiplicity
bin: Nch0−2 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 4.51e-01 ± 5.09e-03 ± 4.51e-03 4.89e-01 ± 5.03e-03 ± 4.89e-03

2.75e-01 5.00e-02 3.50e-01 ± 3.73e-03 ± 3.50e-03 3.60e-01 ± 3.73e-03 ± 3.60e-03

3.25e-01 5.00e-02 2.63e-01 ± 2.91e-03 ± 2.63e-03 2.69e-01 ± 2.92e-03 ± 2.69e-03

3.75e-01 5.00e-02 2.00e-01 ± 2.36e-03 ± 2.00e-03 2.09e-01 ± 2.42e-03 ± 2.09e-03

4.25e-01 5.00e-02 1.52e-01 ± 1.92e-03 ± 1.52e-03 1.57e-01 ± 1.95e-03 ± 1.57e-03

4.75e-01 5.00e-02 1.17e-01 ± 1.58e-03 ± 1.17e-03 1.20e-01 ± 1.61e-03 ± 1.20e-03

5.25e-01 5.00e-02 8.73e-02 ± 1.30e-03 ± 8.73e-04 9.07e-02 ± 1.33e-03 ± 9.07e-04

5.75e-01 5.00e-02 6.42e-02 ± 1.07e-03 ± 1.28e-03 6.76e-02 ± 1.10e-03 ± 1.35e-03

6.25e-01 5.00e-02 4.94e-02 ± 8.92e-04 ± 9.88e-04 4.72e-02 ± 9.05e-04 ± 9.45e-04

6.75e-01 5.00e-02 3.69e-02 ± 7.45e-04 ± 1.11e-03 3.87e-02 ± 8.33e-04 ± 1.16e-03

7.25e-01 5.00e-02 2.68e-02 ± 6.13e-04 ± 8.05e-04 3.08e-02 ± 6.71e-04 ± 9.23e-04

7.75e-01 5.00e-02 2.31e-02 ± 5.49e-04 ± 6.93e-04 2.21e-02 ± 5.83e-04 ± 6.63e-04
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Table C.8
Invariant yields for π− and π+ at mid-rapidity for the multiplicity
bin: Nch3−4 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 1.80e+00 ± 1.16e-02 ± 1.80e-02 1.85e+00 ± 1.01e-02 ± 1.85e-02

2.75e-01 5.00e-02 1.37e+00 ± 7.69e-03 ± 1.37e-02 1.41e+00 ± 7.75e-03 ± 1.41e-02

3.25e-01 5.00e-02 1.04e+00 ± 6.11e-03 ± 1.04e-02 1.06e+00 ± 6.13e-03 ± 1.06e-02

3.75e-01 5.00e-02 7.75e-01 ± 4.88e-03 ± 7.75e-03 7.91e-01 ± 4.94e-03 ± 7.91e-03

4.25e-01 5.00e-02 5.84e-01 ± 3.97e-03 ± 5.84e-03 5.90e-01 ± 3.99e-03 ± 5.90e-03

4.75e-01 5.00e-02 4.33e-01 ± 3.23e-03 ± 4.33e-03 4.46e-01 ± 3.28e-03 ± 4.46e-03

5.25e-01 5.00e-02 3.23e-01 ± 2.66e-03 ± 3.23e-03 3.29e-01 ± 2.70e-03 ± 3.29e-03

5.75e-01 5.00e-02 2.43e-01 ± 2.21e-03 ± 4.85e-03 2.47e-01 ± 2.22e-03 ± 4.95e-03

6.25e-01 5.00e-02 1.81e-01 ± 1.83e-03 ± 3.63e-03 1.88e-01 ± 1.88e-03 ± 3.75e-03

6.75e-01 5.00e-02 1.40e-01 ± 1.55e-03 ± 4.19e-03 1.40e-01 ± 1.60e-03 ± 4.19e-03

7.25e-01 5.00e-02 1.02e-01 ± 1.50e-03 ± 3.05e-03 1.06e-01 ± 1.51e-03 ± 3.19e-03

7.75e-01 5.00e-02 8.19e-02 ± 1.25e-03 ± 2.46e-03 8.32e-02 ± 1.23e-03 ± 2.49e-03

Table C.9
Invariant yields for π− and π+ at mid-rapidity for the multiplicity
bin: Nch5−6 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 3.20e+00 ± 2.10e-02 ± 3.20e-02 3.31e+00 ± 1.90e-02 ± 3.31e-02

2.75e-01 5.00e-02 2.38e+00 ± 1.41e-02 ± 2.38e-02 2.45e+00 ± 1.41e-02 ± 2.45e-02

3.25e-01 5.00e-02 1.80e+00 ± 1.12e-02 ± 1.80e-02 1.81e+00 ± 1.12e-02 ± 1.81e-02

3.75e-01 5.00e-02 1.34e+00 ± 8.92e-03 ± 1.34e-02 1.36e+00 ± 9.03e-03 ± 1.36e-02

4.25e-01 5.00e-02 9.88e-01 ± 7.22e-03 ± 9.88e-03 1.01e+00 ± 7.33e-03 ± 1.01e-02

4.75e-01 5.00e-02 7.31e-01 ± 5.87e-03 ± 7.31e-03 7.47e-01 ± 5.94e-03 ± 7.47e-03

5.25e-01 5.00e-02 5.48e-01 ± 4.83e-03 ± 5.48e-03 5.67e-01 ± 4.92e-03 ± 5.67e-03

5.75e-01 5.00e-02 4.13e-01 ± 4.02e-03 ± 8.27e-03 4.29e-01 ± 4.11e-03 ± 8.59e-03

6.25e-01 5.00e-02 3.17e-01 ± 3.40e-03 ± 6.35e-03 3.26e-01 ± 3.46e-03 ± 6.53e-03

6.75e-01 5.00e-02 2.42e-01 ± 2.85e-03 ± 7.27e-03 2.44e-01 ± 2.99e-03 ± 7.32e-03

7.25e-01 5.00e-02 1.85e-01 ± 2.71e-03 ± 5.54e-03 1.86e-01 ± 2.83e-03 ± 5.58e-03

7.75e-01 5.00e-02 1.47e-01 ± 2.28e-03 ± 4.42e-03 1.45e-01 ± 2.81e-03 ± 4.36e-03
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Table C.10
Invariant yields for π− and π+ at mid-rapidity for the multiplicity
bin: Nch7−8 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 4.48e+00 ± 3.77e-02 ± 4.48e-02 4.65e+00 ± 3.34e-02 ± 4.65e-02

2.75e-01 5.00e-02 3.41e+00 ± 2.51e-02 ± 3.41e-02 3.41e+00 ± 2.50e-02 ± 3.41e-02

3.25e-01 5.00e-02 2.46e+00 ± 1.94e-02 ± 2.46e-02 2.51e+00 ± 1.96e-02 ± 2.51e-02

3.75e-01 5.00e-02 1.82e+00 ± 1.55e-02 ± 1.82e-02 1.86e+00 ± 1.57e-02 ± 1.86e-02

4.25e-01 5.00e-02 1.37e+00 ± 1.26e-02 ± 1.37e-02 1.37e+00 ± 1.26e-02 ± 1.37e-02

4.75e-01 5.00e-02 1.01e+00 ± 1.02e-02 ± 1.01e-02 1.04e+00 ± 1.04e-02 ± 1.04e-02

5.25e-01 5.00e-02 7.58e-01 ± 8.42e-03 ± 7.58e-03 7.72e-01 ± 8.53e-03 ± 7.72e-03

5.75e-01 5.00e-02 5.72e-01 ± 7.01e-03 ± 1.14e-02 5.87e-01 ± 7.01e-03 ± 1.17e-02

6.25e-01 5.00e-02 4.40e-01 ± 5.89e-03 ± 8.79e-03 4.63e-01 ± 6.10e-03 ± 9.26e-03

6.75e-01 5.00e-02 3.44e-01 ± 5.04e-03 ± 1.03e-02 3.38e-01 ± 5.24e-03 ± 1.01e-02

7.25e-01 5.00e-02 2.66e-01 ± 4.84e-03 ± 7.97e-03 2.51e-01 ± 4.94e-03 ± 7.52e-03

7.75e-01 5.00e-02 2.17e-01 ± 4.11e-03 ± 6.52e-03 2.11e-01 ± 4.07e-03 ± 6.33e-03

Table C.11
Invariant yields for π− and π+ at mid-rapidity for the multiplicity
bin: Nch9−... in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 6.24e+00 ± 5.40e-02 ± 6.24e-02 6.45e+00 ± 4.69e-02 ± 6.45e-02

2.75e-01 5.00e-02 4.56e+00 ± 3.47e-02 ± 4.56e-02 4.63e+00 ± 3.46e-02 ± 4.63e-02

3.25e-01 5.00e-02 3.40e+00 ± 2.72e-02 ± 3.40e-02 3.37e+00 ± 2.69e-02 ± 3.37e-02

3.75e-01 5.00e-02 2.51e+00 ± 2.16e-02 ± 2.51e-02 2.53e+00 ± 2.18e-02 ± 2.53e-02

4.25e-01 5.00e-02 1.88e+00 ± 1.76e-02 ± 1.88e-02 1.87e+00 ± 1.76e-02 ± 1.87e-02

4.75e-01 5.00e-02 1.41e+00 ± 1.45e-02 ± 1.41e-02 1.41e+00 ± 1.44e-02 ± 1.41e-02

5.25e-01 5.00e-02 1.06e+00 ± 1.18e-02 ± 1.06e-02 1.09e+00 ± 1.21e-02 ± 1.09e-02

5.75e-01 5.00e-02 8.25e-01 ± 1.00e-02 ± 1.65e-02 8.39e-01 ± 1.02e-02 ± 1.68e-02

6.25e-01 5.00e-02 6.16e-01 ± 8.32e-03 ± 1.23e-02 6.26e-01 ± 8.37e-03 ± 1.25e-02

6.75e-01 5.00e-02 5.02e-01 ± 7.23e-03 ± 1.50e-02 4.94e-01 ± 7.40e-03 ± 1.48e-02

7.25e-01 5.00e-02 3.78e-01 ± 7.15e-03 ± 1.14e-02 3.87e-01 ± 7.89e-03 ± 1.16e-02

7.75e-01 5.00e-02 2.98e-01 ± 5.55e-03 ± 8.95e-03 3.06e-01 ± 5.70e-03 ± 9.17e-03
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Table C.12
Invariant yields for K− and K+ at mid-rapidity in Minimum Bias
pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 1.32e-01 ± 2.23e-03 ± 1.32e-03 1.31e-01 ± 2.16e-03 ± 1.31e-03

3.25e-01 5.00e-02 1.08e-01 ± 1.64e-03 ± 2.16e-03 1.11e-01 ± 1.65e-03 ± 2.22e-03

3.75e-01 5.00e-02 8.97e-02 ± 1.30e-03 ± 2.69e-03 9.65e-02 ± 1.32e-03 ± 2.90e-03

4.25e-01 5.00e-02 7.34e-02 ± 1.15e-03 ± 8.81e-03 7.92e-02 ± 1.18e-03 ± 9.50e-03

4.75e-01 5.00e-02 6.97e-02 ± 1.02e-03 ± 9.05e-03 7.02e-02 ± 1.04e-03 ± 9.13e-03

5.25e-01 5.00e-02 5.07e-02 ± 8.36e-04 ± 5.07e-03 5.52e-02 ± 8.63e-04 ± 5.52e-03

5.75e-01 5.00e-02 4.05e-02 ± 6.82e-04 ± 2.43e-03 4.21e-02 ± 7.42e-04 ± 2.52e-03

6.25e-01 5.00e-02 3.32e-02 ± 5.95e-04 ± 2.32e-03 3.28e-02 ± 6.72e-04 ± 2.30e-03

6.75e-01 5.00e-02 2.69e-02 ± 7.20e-04 ± 2.69e-03 2.83e-02 ± 7.75e-04 ± 2.83e-03

7.25e-01 5.00e-02 2.46e-02 ± 1.05e-03 ± 7.39e-04 2.79e-02 ± 1.31e-03 ± 8.37e-04

Table C.13
Invariant yields for K− and K+ at mid-rapidity for the multiplicity
bin: Nch0−2 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 2.81e-02 ± 2.55e-03 ± 8.44e-04 2.27e-02 ± 2.06e-03 ± 6.81e-04

2.75e-01 5.00e-02 2.73e-02 ± 1.71e-03 ± 2.73e-04 3.24e-02 ± 2.09e-03 ± 3.24e-04

3.25e-01 5.00e-02 2.19e-02 ± 1.23e-03 ± 4.39e-04 2.66e-02 ± 1.50e-03 ± 5.31e-04

3.75e-01 5.00e-02 1.94e-02 ± 9.95e-04 ± 5.83e-04 2.49e-02 ± 1.52e-03 ± 7.46e-04

4.25e-01 5.00e-02 1.58e-02 ± 8.40e-04 ± 1.89e-03 1.98e-02 ± 9.50e-04 ± 2.37e-03

4.75e-01 5.00e-02 1.34e-02 ± 7.11e-04 ± 1.74e-03 1.76e-02 ± 8.18e-04 ± 2.29e-03

5.25e-01 5.00e-02 1.04e-02 ± 5.98e-04 ± 1.04e-03 1.34e-02 ± 6.69e-04 ± 1.34e-03

5.75e-01 5.00e-02 8.55e-03 ± 5.07e-04 ± 5.13e-04 1.01e-02 ± 5.48e-04 ± 6.07e-04

6.25e-01 5.00e-02 6.24e-03 ± 4.35e-04 ± 4.37e-04 7.62e-03 ± 5.00e-04 ± 5.33e-04

6.75e-01 5.00e-02 5.78e-03 ± 4.78e-04 ± 5.78e-04 8.07e-03 ± 6.14e-04 ± 8.07e-04

7.25e-01 5.00e-02 5.70e-03 ± 1.02e-03 ± 1.71e-04 5.10e-03 ± 7.57e-04 ± 1.53e-04
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Table C.14
Invariant yields for K− and K+ at mid-rapidity for the multiplicity
bin: Nch3−4 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 1.38e-01 ± 5.56e-03 ± 4.13e-03 1.26e-01 ± 4.87e-03 ± 3.78e-03

2.75e-01 5.00e-02 1.21e-01 ± 3.71e-03 ± 1.21e-03 1.16e-01 ± 3.52e-03 ± 1.16e-03

3.25e-01 5.00e-02 1.02e-01 ± 2.76e-03 ± 2.05e-03 1.02e-01 ± 2.73e-03 ± 2.03e-03

3.75e-01 5.00e-02 8.28e-02 ± 2.15e-03 ± 2.49e-03 8.81e-02 ± 2.22e-03 ± 2.64e-03

4.25e-01 5.00e-02 6.60e-02 ± 1.87e-03 ± 7.92e-03 7.36e-02 ± 1.95e-03 ± 8.83e-03

4.75e-01 5.00e-02 6.29e-02 ± 1.65e-03 ± 8.18e-03 6.12e-02 ± 1.64e-03 ± 7.96e-03

5.25e-01 5.00e-02 4.42e-02 ± 1.35e-03 ± 4.42e-03 4.93e-02 ± 1.40e-03 ± 4.93e-03

5.75e-01 5.00e-02 3.62e-02 ± 1.16e-03 ± 2.17e-03 3.80e-02 ± 1.20e-03 ± 2.28e-03

6.25e-01 5.00e-02 2.83e-02 ± 1.08e-03 ± 1.98e-03 2.97e-02 ± 1.10e-03 ± 2.08e-03

6.75e-01 5.00e-02 2.06e-02 ± 1.03e-03 ± 2.06e-03 2.48e-02 ± 1.21e-03 ± 2.48e-03

7.25e-01 5.00e-02 2.19e-02 ± 1.91e-03 ± 6.56e-04 2.20e-02 ± 1.72e-03 ± 6.60e-04

Table C.15
Invariant yields for K− and K+ at mid-rapidity for the multiplicity
bin: Nch5−6 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 2.64e-01 ± 1.07e-02 ± 7.91e-03 2.06e-01 ± 8.67e-03 ± 6.19e-03

2.75e-01 5.00e-02 2.15e-01 ± 6.88e-03 ± 2.15e-03 1.99e-01 ± 6.43e-03 ± 1.99e-03

3.25e-01 5.00e-02 1.70e-01 ± 4.96e-03 ± 3.39e-03 1.74e-01 ± 4.99e-03 ± 3.47e-03

3.75e-01 5.00e-02 1.36e-01 ± 3.86e-03 ± 4.08e-03 1.46e-01 ± 4.00e-03 ± 4.38e-03

4.25e-01 5.00e-02 1.14e-01 ± 3.43e-03 ± 1.37e-02 1.22e-01 ± 3.55e-03 ± 1.46e-02

4.75e-01 5.00e-02 1.06e-01 ± 3.04e-03 ± 1.38e-02 1.13e-01 ± 3.16e-03 ± 1.47e-02

5.25e-01 5.00e-02 7.57e-02 ± 2.48e-03 ± 7.57e-03 8.61e-02 ± 2.59e-03 ± 8.61e-03

5.75e-01 5.00e-02 5.69e-02 ± 2.10e-03 ± 3.41e-03 6.55e-02 ± 2.27e-03 ± 3.93e-03

6.25e-01 5.00e-02 5.21e-02 ± 2.07e-03 ± 3.65e-03 5.03e-02 ± 2.05e-03 ± 3.52e-03

6.75e-01 5.00e-02 3.96e-02 ± 2.21e-03 ± 3.96e-03 4.08e-02 ± 2.30e-03 ± 4.08e-03

7.25e-01 5.00e-02 3.75e-02 ± 3.09e-03 ± 1.12e-03 4.29e-02 ± 4.14e-03 ± 1.29e-03
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Table C.16
Invariant yields for K− and K+ at mid-rapidity for the multiplicity
bin: Nch7−8 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 3.17e-01 ± 1.75e-02 ± 9.51e-03 2.83e-01 ± 1.54e-02 ± 8.49e-03

2.75e-01 5.00e-02 2.69e-01 ± 1.15e-02 ± 2.69e-03 2.66e-01 ± 1.11e-02 ± 2.66e-03

3.25e-01 5.00e-02 2.20e-01 ± 8.40e-03 ± 4.41e-03 2.18e-01 ± 8.28e-03 ± 4.35e-03

3.75e-01 5.00e-02 1.90e-01 ± 6.73e-03 ± 5.70e-03 2.07e-01 ± 7.05e-03 ± 6.20e-03

4.25e-01 5.00e-02 1.60e-01 ± 6.09e-03 ± 1.92e-02 1.68e-01 ± 6.34e-03 ± 2.01e-02

4.75e-01 5.00e-02 1.42e-01 ± 5.21e-03 ± 1.84e-02 1.40e-01 ± 5.34e-03 ± 1.81e-02

5.25e-01 5.00e-02 1.07e-01 ± 4.42e-03 ± 1.07e-02 1.17e-01 ± 4.55e-03 ± 1.17e-02

5.75e-01 5.00e-02 7.52e-02 ± 3.75e-03 ± 4.51e-03 8.90e-02 ± 3.95e-03 ± 5.34e-03

6.25e-01 5.00e-02 7.40e-02 ± 3.59e-03 ± 5.18e-03 7.20e-02 ± 3.78e-03 ± 5.04e-03

6.75e-01 5.00e-02 6.13e-02 ± 4.49e-03 ± 6.13e-03 6.14e-02 ± 4.15e-03 ± 6.14e-03

7.25e-01 5.00e-02 7.40e-02 ± 8.44e-03 ± 2.22e-03 6.71e-02 ± 7.84e-03 ± 2.01e-03

Table C.17
Invariant yields for K− and K+ at mid-rapidity for the multiplicity
bin: Nch9−... in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 4.37e-01 ± 2.48e-02 ± 1.31e-02 4.11e-01 ± 3.06e-02 ± 1.23e-02

2.75e-01 5.00e-02 3.53e-01 ± 1.56e-02 ± 3.53e-03 3.86e-01 ± 1.64e-02 ± 3.86e-03

3.25e-01 5.00e-02 2.82e-01 ± 1.13e-02 ± 5.64e-03 3.45e-01 ± 1.29e-02 ± 6.89e-03

3.75e-01 5.00e-02 2.66e-01 ± 9.51e-03 ± 7.98e-03 2.72e-01 ± 9.79e-03 ± 8.17e-03

4.25e-01 5.00e-02 2.16e-01 ± 8.52e-03 ± 2.59e-02 2.23e-01 ± 8.95e-03 ± 2.68e-02

4.75e-01 5.00e-02 2.17e-01 ± 7.84e-03 ± 2.82e-02 2.32e-01 ± 8.19e-03 ± 3.02e-02

5.25e-01 5.00e-02 1.48e-01 ± 6.24e-03 ± 1.48e-02 1.79e-01 ± 6.65e-03 ± 1.79e-02

5.75e-01 5.00e-02 1.31e-01 ± 5.77e-03 ± 7.87e-03 1.30e-01 ± 5.58e-03 ± 7.83e-03

6.25e-01 5.00e-02 9.30e-02 ± 5.23e-03 ± 6.51e-03 1.12e-01 ± 5.21e-03 ± 7.85e-03

6.75e-01 5.00e-02 8.77e-02 ± 5.77e-03 ± 8.77e-03 9.41e-02 ± 6.15e-03 ± 9.41e-03

7.25e-01 5.00e-02 7.55e-02 ± 9.74e-03 ± 2.27e-03 1.05e-01 ± 1.23e-02 ± 3.14e-03
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Table C.18
Invariant yields for p and p at mid-rapidity in Minimum Bias pp
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

4.25e-01 5.00e-02 4.36e-02 ± 6.73e-04 ± 4.36e-04 0.00e+00 ± 0.00e+00 ± 0.00e+00

4.75e-01 5.00e-02 4.15e-02 ± 6.19e-04 ± 4.15e-04 4.38e-02 ± 3.58e-04 ± 4.38e-04

5.25e-01 5.00e-02 3.58e-02 ± 5.45e-04 ± 3.58e-04 4.01e-02 ± 3.48e-04 ± 4.01e-04

5.75e-01 5.00e-02 3.10e-02 ± 4.84e-04 ± 3.10e-04 3.48e-02 ± 3.30e-04 ± 3.48e-04

6.25e-01 5.00e-02 2.72e-02 ± 4.37e-04 ± 2.72e-04 2.90e-02 ± 3.06e-04 ± 2.90e-04

6.75e-01 5.00e-02 2.27e-02 ± 3.84e-04 ± 4.54e-04 2.55e-02 ± 2.91e-04 ± 5.09e-04

7.25e-01 5.00e-02 1.92e-02 ± 3.41e-04 ± 3.84e-04 2.18e-02 ± 2.72e-04 ± 4.36e-04

7.75e-01 5.00e-02 1.59e-02 ± 3.01e-04 ± 3.19e-04 1.86e-02 ± 2.54e-04 ± 3.73e-04

8.25e-01 5.00e-02 1.44e-02 ± 2.80e-04 ± 7.19e-04 1.62e-02 ± 2.39e-04 ± 8.09e-04

8.75e-01 5.00e-02 1.20e-02 ± 2.45e-04 ± 6.02e-04 1.38e-02 ± 2.21e-04 ± 6.88e-04

9.25e-01 5.00e-02 9.98e-03 ± 2.16e-04 ± 3.99e-04 1.20e-02 ± 2.05e-04 ± 4.80e-04

9.75e-01 5.00e-02 8.19e-03 ± 1.91e-04 ± 2.46e-04 9.78e-03 ± 1.85e-04 ± 2.93e-04

1.03e+00 5.00e-02 7.11e-03 ± 1.73e-04 ± 2.13e-04 8.55e-03 ± 1.87e-04 ± 2.56e-04

1.08e+00 5.00e-02 5.48e-03 ± 1.54e-04 ± 1.64e-04 7.13e-03 ± 1.63e-04 ± 2.14e-04

Table C.19
Invariant yields for p and p at mid-rapidity for the multiplicity bin:
Nch0−2 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

4.25e-01 5.00e-02 1.15e-02 ± 6.10e-04 ± 1.15e-04 0.00e+00 ± 0.00e+00 ± 0.00e+00

4.75e-01 5.00e-02 1.21e-02 ± 5.83e-04 ± 1.21e-04 1.32e-02 ± 1.95e-04 ± 1.32e-04

5.25e-01 5.00e-02 9.67e-03 ± 4.96e-04 ± 9.67e-05 1.09e-02 ± 1.76e-04 ± 1.09e-04

5.75e-01 5.00e-02 7.48e-03 ± 4.14e-04 ± 7.48e-05 9.08e-03 ± 1.64e-04 ± 9.08e-05

6.25e-01 5.00e-02 6.97e-03 ± 3.83e-04 ± 6.97e-05 7.02e-03 ± 1.48e-04 ± 7.02e-05

6.75e-01 5.00e-02 5.20e-03 ± 3.18e-04 ± 1.04e-04 5.89e-03 ± 1.40e-04 ± 1.18e-04

7.25e-01 5.00e-02 4.76e-03 ± 3.21e-04 ± 9.51e-05 4.78e-03 ± 1.32e-04 ± 9.55e-05

7.75e-01 5.00e-02 3.39e-03 ± 2.36e-04 ± 6.77e-05 4.03e-03 ± 1.31e-04 ± 8.06e-05

8.25e-01 5.00e-02 2.57e-03 ± 2.01e-04 ± 1.29e-04 3.11e-03 ± 1.17e-04 ± 1.55e-04

8.75e-01 5.00e-02 2.14e-03 ± 1.88e-04 ± 1.07e-04 2.66e-03 ± 1.08e-04 ± 1.33e-04

9.25e-01 5.00e-02 1.87e-03 ± 1.72e-04 ± 7.47e-05 2.13e-03 ± 1.04e-04 ± 8.53e-05

9.75e-01 5.00e-02 1.42e-03 ± 1.47e-04 ± 4.27e-05 1.67e-03 ± 9.74e-05 ± 5.02e-05

1.03e+00 5.00e-02 1.16e-03 ± 1.13e-04 ± 3.48e-05 1.50e-03 ± 9.44e-05 ± 4.50e-05

1.08e+00 5.00e-02 1.07e-03 ± 1.22e-04 ± 3.20e-05 1.39e-03 ± 1.03e-04 ± 4.16e-05



158

Table C.20
Invariant yields for p and p at mid-rapidity for the multiplicity bin:
Nch3−4 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

4.25e-01 5.00e-02 4.04e-02 ± 1.12e-03 ± 4.04e-04 0.00e+00 ± 0.00e+00 ± 0.00e+00

4.75e-01 5.00e-02 3.91e-02 ± 1.04e-03 ± 3.91e-04 4.45e-02 ± 6.74e-04 ± 4.45e-04

5.25e-01 5.00e-02 3.35e-02 ± 9.09e-04 ± 3.35e-04 3.95e-02 ± 6.38e-04 ± 3.95e-04

5.75e-01 5.00e-02 2.90e-02 ± 8.03e-04 ± 2.90e-04 3.17e-02 ± 5.75e-04 ± 3.17e-04

6.25e-01 5.00e-02 2.37e-02 ± 6.98e-04 ± 2.37e-04 2.58e-02 ± 5.20e-04 ± 2.58e-04

6.75e-01 5.00e-02 1.96e-02 ± 6.08e-04 ± 3.91e-04 2.15e-02 ± 4.84e-04 ± 4.29e-04

7.25e-01 5.00e-02 1.69e-02 ± 5.44e-04 ± 3.38e-04 1.85e-02 ± 4.62e-04 ± 3.69e-04

7.75e-01 5.00e-02 1.39e-02 ± 4.72e-04 ± 2.78e-04 1.48e-02 ± 4.14e-04 ± 2.95e-04

8.25e-01 5.00e-02 1.21e-02 ± 4.29e-04 ± 6.03e-04 1.29e-02 ± 3.90e-04 ± 6.47e-04

8.75e-01 5.00e-02 9.23e-03 ± 3.70e-04 ± 4.62e-04 1.05e-02 ± 3.37e-04 ± 5.27e-04

9.25e-01 5.00e-02 7.65e-03 ± 3.31e-04 ± 3.06e-04 9.37e-03 ± 3.12e-04 ± 3.75e-04

9.75e-01 5.00e-02 6.42e-03 ± 2.93e-04 ± 1.93e-04 7.57e-03 ± 2.88e-04 ± 2.27e-04

1.03e+00 5.00e-02 5.45e-03 ± 2.73e-04 ± 1.63e-04 6.43e-03 ± 2.64e-04 ± 1.93e-04

1.08e+00 5.00e-02 3.66e-03 ± 2.26e-04 ± 1.10e-04 5.17e-03 ± 2.52e-04 ± 1.55e-04

Table C.21
Invariant yields for p and p at mid-rapidity for the multiplicity bin:
Nch5−6 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

4.25e-01 5.00e-02 6.92e-02 ± 2.04e-03 ± 6.92e-04 0.00e+00 ± 0.00e+00 ± 0.00e+00

4.75e-01 5.00e-02 6.38e-02 ± 1.85e-03 ± 6.38e-04 6.67e-02 ± 1.39e-03 ± 6.67e-04

5.25e-01 5.00e-02 5.53e-02 ± 1.63e-03 ± 5.53e-04 6.10e-02 ± 1.32e-03 ± 6.10e-04

5.75e-01 5.00e-02 4.57e-02 ± 1.42e-03 ± 4.57e-04 5.22e-02 ± 1.23e-03 ± 5.22e-04

6.25e-01 5.00e-02 4.29e-02 ± 1.31e-03 ± 4.29e-04 4.31e-02 ± 1.11e-03 ± 4.31e-04

6.75e-01 5.00e-02 3.40e-02 ± 1.12e-03 ± 6.80e-04 4.11e-02 ± 1.07e-03 ± 8.23e-04

7.25e-01 5.00e-02 2.93e-02 ± 1.01e-03 ± 5.87e-04 3.27e-02 ± 9.49e-04 ± 6.54e-04

7.75e-01 5.00e-02 2.46e-02 ± 8.86e-04 ± 4.91e-04 2.79e-02 ± 8.63e-04 ± 5.58e-04

8.25e-01 5.00e-02 2.28e-02 ± 8.26e-04 ± 1.14e-03 2.50e-02 ± 8.38e-04 ± 1.25e-03

8.75e-01 5.00e-02 1.82e-02 ± 7.31e-04 ± 9.10e-04 1.86e-02 ± 7.03e-04 ± 9.32e-04

9.25e-01 5.00e-02 1.47e-02 ± 6.36e-04 ± 5.89e-04 1.56e-02 ± 6.16e-04 ± 6.25e-04

9.75e-01 5.00e-02 1.26e-02 ± 5.61e-04 ± 3.79e-04 1.37e-02 ± 5.76e-04 ± 4.10e-04

1.03e+00 5.00e-02 1.06e-02 ± 5.29e-04 ± 3.17e-04 1.05e-02 ± 4.92e-04 ± 3.15e-04

1.08e+00 5.00e-02 7.92e-03 ± 4.39e-04 ± 2.38e-04 9.37e-03 ± 5.35e-04 ± 2.81e-04
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Table C.22
Invariant yields for p and p at mid-rapidity for the multiplicity bin:
Nch7−8 in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

4.25e-01 5.00e-02 9.34e-02 ± 3.53e-03 ± 9.34e-04 0.00e+00 ± 0.00e+00 ± 0.00e+00

4.75e-01 5.00e-02 8.31e-02 ± 3.12e-03 ± 8.31e-04 8.78e-02 ± 2.42e-03 ± 8.78e-04

5.25e-01 5.00e-02 7.58e-02 ± 2.83e-03 ± 7.58e-04 7.98e-02 ± 2.24e-03 ± 7.98e-04

5.75e-01 5.00e-02 6.52e-02 ± 2.51e-03 ± 6.52e-04 6.90e-02 ± 2.16e-03 ± 6.90e-04

6.25e-01 5.00e-02 6.02e-02 ± 2.30e-03 ± 6.02e-04 6.08e-02 ± 1.96e-03 ± 6.08e-04

6.75e-01 5.00e-02 5.14e-02 ± 2.04e-03 ± 1.03e-03 5.34e-02 ± 1.85e-03 ± 1.07e-03

7.25e-01 5.00e-02 4.03e-02 ± 1.74e-03 ± 8.07e-04 4.79e-02 ± 1.80e-03 ± 9.57e-04

7.75e-01 5.00e-02 3.36e-02 ± 1.53e-03 ± 6.72e-04 4.31e-02 ± 1.65e-03 ± 8.61e-04

8.25e-01 5.00e-02 3.17e-02 ± 1.44e-03 ± 1.59e-03 3.66e-02 ± 1.56e-03 ± 1.83e-03

8.75e-01 5.00e-02 2.76e-02 ± 1.34e-03 ± 1.38e-03 3.11e-02 ± 2.22e-03 ± 1.55e-03

9.25e-01 5.00e-02 2.23e-02 ± 1.10e-03 ± 8.94e-04 2.73e-02 ± 1.18e-03 ± 1.09e-03

9.75e-01 5.00e-02 1.87e-02 ± 1.05e-03 ± 5.60e-04 2.23e-02 ± 1.03e-03 ± 6.70e-04

1.03e+00 5.00e-02 1.68e-02 ± 9.61e-04 ± 5.03e-04 1.84e-02 ± 1.11e-03 ± 5.52e-04

1.08e+00 5.00e-02 1.28e-02 ± 8.30e-04 ± 3.85e-04 1.42e-02 ± 1.80e-03 ± 4.25e-04

Table C.23
Invariant yields for p and p at mid-rapidity for the multiplicity bin:
Nch9−... in pp collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

4.25e-01 5.00e-02 1.18e-01 ± 4.74e-03 ± 1.18e-03 0.00e+00 ± 0.00e+00 ± 0.00e+00

4.75e-01 5.00e-02 1.14e-01 ± 4.36e-03 ± 1.14e-03 1.13e-01 ± 3.21e-03 ± 1.13e-03

5.25e-01 5.00e-02 9.54e-02 ± 3.79e-03 ± 9.54e-04 1.01e-01 ± 3.02e-03 ± 1.01e-03

5.75e-01 5.00e-02 9.08e-02 ± 3.51e-03 ± 9.08e-04 9.61e-02 ± 2.98e-03 ± 9.61e-04

6.25e-01 5.00e-02 7.60e-02 ± 3.08e-03 ± 7.60e-04 7.64e-02 ± 2.59e-03 ± 7.64e-04

6.75e-01 5.00e-02 6.94e-02 ± 2.84e-03 ± 1.39e-03 6.78e-02 ± 2.44e-03 ± 1.36e-03

7.25e-01 5.00e-02 6.14e-02 ± 2.55e-03 ± 1.23e-03 6.79e-02 ± 2.59e-03 ± 1.36e-03

7.75e-01 5.00e-02 5.29e-02 ± 2.29e-03 ± 1.06e-03 5.66e-02 ± 2.27e-03 ± 1.13e-03

8.25e-01 5.00e-02 5.03e-02 ± 2.17e-03 ± 2.51e-03 5.43e-02 ± 2.25e-03 ± 2.72e-03

8.75e-01 5.00e-02 4.18e-02 ± 1.94e-03 ± 2.09e-03 4.49e-02 ± 3.52e-03 ± 2.25e-03

9.25e-01 5.00e-02 3.45e-02 ± 1.75e-03 ± 1.38e-03 3.93e-02 ± 8.42e-03 ± 1.57e-03

9.75e-01 5.00e-02 2.64e-02 ± 1.46e-03 ± 7.93e-04 3.48e-02 ± 1.56e-03 ± 1.04e-03

1.03e+00 5.00e-02 2.35e-02 ± 1.35e-03 ± 7.05e-04 2.82e-02 ± 1.45e-03 ± 8.45e-04

1.08e+00 5.00e-02 2.06e-02 ± 1.23e-03 ± 6.19e-04 2.63e-02 ± 1.36e-03 ± 7.90e-04



160

Table C.24
Invariant yields for π− and π+ at mid-rapidity in Minimum Bias
dAu collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 6.58e+00 ± 1.03e-02 ± 6.58e-02 6.61e+00 ± 9.77e-03 ± 6.61e-02

2.75e-01 5.00e-02 4.86e+00 ± 6.02e-03 ± 4.86e-02 4.83e+00 ± 5.99e-03 ± 4.83e-02

3.25e-01 5.00e-02 3.62e+00 ± 4.68e-03 ± 3.62e-02 3.60e+00 ± 4.61e-03 ± 3.60e-02

3.75e-01 5.00e-02 2.70e+00 ± 3.74e-03 ± 2.70e-02 2.71e+00 ± 3.74e-03 ± 2.71e-02

4.25e-01 5.00e-02 2.06e+00 ± 3.05e-03 ± 8.24e-02 2.06e+00 ± 3.06e-03 ± 8.24e-02

4.75e-01 5.00e-02 1.57e+00 ± 2.52e-03 ± 6.27e-02 1.57e+00 ± 2.51e-03 ± 6.30e-02

5.25e-01 5.00e-02 1.20e+00 ± 2.09e-03 ± 4.81e-02 1.21e+00 ± 2.11e-03 ± 4.84e-02

5.75e-01 5.00e-02 9.31e-01 ± 1.75e-03 ± 3.72e-02 9.36e-01 ± 1.76e-03 ± 3.74e-02

6.25e-01 5.00e-02 7.25e-01 ± 1.51e-03 ± 4.35e-02 7.29e-01 ± 1.51e-03 ± 4.37e-02

6.75e-01 5.00e-02 5.70e-01 ± 1.34e-03 ± 1.71e-02 5.74e-01 ± 1.34e-03 ± 1.72e-02

Table C.25
Invariant yields for π− and π+ at mid-rapidity in 0 - 20 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 1.16e+01 ± 3.42e-02 ± 1.16e-01 1.19e+01 ± 2.98e-02 ± 1.19e-01

2.75e-01 5.00e-02 8.70e+00 ± 1.83e-02 ± 8.70e-02 8.69e+00 ± 1.81e-02 ± 8.69e-02

3.25e-01 5.00e-02 6.51e+00 ± 1.42e-02 ± 6.51e-02 6.49e+00 ± 1.39e-02 ± 6.49e-02

3.75e-01 5.00e-02 4.89e+00 ± 1.13e-02 ± 4.89e-02 4.94e+00 ± 1.14e-02 ± 4.94e-02

4.25e-01 5.00e-02 3.74e+00 ± 9.25e-03 ± 1.49e-01 3.77e+00 ± 9.32e-03 ± 1.51e-01

4.75e-01 5.00e-02 2.87e+00 ± 7.65e-03 ± 1.15e-01 2.90e+00 ± 7.70e-03 ± 1.16e-01

5.25e-01 5.00e-02 2.22e+00 ± 6.41e-03 ± 8.89e-02 2.23e+00 ± 6.46e-03 ± 8.94e-02

5.75e-01 5.00e-02 1.73e+00 ± 5.41e-03 ± 6.90e-02 1.74e+00 ± 5.45e-03 ± 6.98e-02

6.25e-01 5.00e-02 1.35e+00 ± 4.64e-03 ± 8.10e-02 1.37e+00 ± 4.68e-03 ± 8.20e-02

6.75e-01 5.00e-02 1.07e+00 ± 4.15e-03 ± 3.21e-02 1.09e+00 ± 4.18e-03 ± 3.26e-02
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Table C.26
Invariant yields for π− and π+ at mid-rapidity in 20 - 40 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 8.84e+00 ± 1.99e-02 ± 8.84e-02 8.53e+00 ± 2.38e-02 ± 8.53e-02

2.75e-01 5.00e-02 6.29e+00 ± 1.43e-02 ± 6.29e-02 6.23e+00 ± 1.43e-02 ± 6.23e-02

3.25e-01 5.00e-02 4.69e+00 ± 1.12e-02 ± 4.69e-02 4.65e+00 ± 1.12e-02 ± 4.65e-02

3.75e-01 5.00e-02 3.51e+00 ± 9.06e-03 ± 3.51e-02 3.48e+00 ± 9.01e-03 ± 3.48e-02

4.25e-01 5.00e-02 2.66e+00 ± 7.39e-03 ± 1.07e-01 2.66e+00 ± 7.38e-03 ± 1.07e-01

4.75e-01 5.00e-02 2.04e+00 ± 6.09e-03 ± 8.16e-02 2.04e+00 ± 6.09e-03 ± 8.16e-02

5.25e-01 5.00e-02 1.57e+00 ± 5.11e-03 ± 6.27e-02 1.58e+00 ± 5.13e-03 ± 6.32e-02

5.75e-01 5.00e-02 1.21e+00 ± 4.28e-03 ± 4.86e-02 1.22e+00 ± 4.28e-03 ± 4.86e-02

6.25e-01 5.00e-02 9.45e-01 ± 3.66e-03 ± 5.67e-02 9.54e-01 ± 3.65e-03 ± 5.73e-02

6.75e-01 5.00e-02 7.43e-01 ± 3.27e-03 ± 2.23e-02 7.49e-01 ± 3.28e-03 ± 2.25e-02

Table C.27
Invariant yields for π− and π+ at per-rapidity in 40 - 100 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 4.16e+00 ± 1.04e-02 ± 4.16e-02 4.10e+00 ± 9.60e-02 ± 4.10e-02

2.75e-01 5.00e-02 3.07e+00 ± 6.16e-03 ± 3.07e-02 3.00e+00 ± 6.29e-02 ± 3.00e-02

3.25e-01 5.00e-02 2.28e+00 ± 4.93e-03 ± 2.28e-02 2.27e+00 ± 4.95e-02 ± 2.27e-02

3.75e-01 5.00e-02 1.69e+00 ± 3.92e-03 ± 1.69e-02 1.65e+00 ± 3.90e-02 ± 1.65e-02

4.25e-01 5.00e-02 1.28e+00 ± 3.20e-03 ± 5.14e-02 1.31e+00 ± 3.24e-02 ± 5.22e-02

4.75e-01 5.00e-02 9.66e-01 ± 2.61e-03 ± 3.86e-02 9.23e-01 ± 2.57e-02 ± 3.69e-02

5.25e-01 5.00e-02 7.31e-01 ± 2.16e-03 ± 2.93e-02 7.55e-01 ± 2.21e-02 ± 3.02e-02

5.75e-01 5.00e-02 5.64e-01 ± 1.81e-03 ± 2.26e-02 5.67e-01 ± 1.83e-02 ± 2.27e-02

6.25e-01 5.00e-02 4.38e-01 ± 1.55e-03 ± 2.63e-02 4.60e-01 ± 1.57e-02 ± 2.76e-02

6.75e-01 5.00e-02 3.40e-01 ± 1.37e-03 ± 1.02e-02 3.32e-01 ± 1.28e-02 ± 9.96e-03
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Table C.28
Invariant yields for K− and K+ at mid-rapidity in Minimum Bias
dAu collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 5.20e-01 ± 4.65e-03 ± 1.56e-02 4.92e-01 ± 4.29e-03 ± 1.48e-02

2.75e-01 5.00e-02 4.37e-01 ± 2.90e-03 ± 4.37e-03 4.31e-01 ± 2.77e-03 ± 4.31e-03

3.25e-01 5.00e-02 3.66e-01 ± 2.15e-03 ± 7.32e-03 3.71e-01 ± 2.10e-03 ± 7.41e-03

3.75e-01 5.00e-02 3.15e-01 ± 1.74e-03 ± 2.84e-02 3.26e-01 ± 1.73e-03 ± 2.93e-02

4.25e-01 5.00e-02 2.63e-01 ± 1.60e-03 ± 3.68e-02 2.75e-01 ± 1.60e-03 ± 3.85e-02

4.75e-01 5.00e-02 2.17e-01 ± 1.48e-03 ± 2.38e-02 2.26e-01 ± 1.50e-03 ± 2.49e-02

5.25e-01 5.00e-02 1.86e-01 ± 1.27e-03 ± 1.30e-02 2.07e-01 ± 1.27e-03 ± 1.45e-02

5.75e-01 5.00e-02 1.63e-01 ± 1.14e-03 ± 1.47e-02 1.77e-01 ± 1.10e-03 ± 1.60e-02

6.25e-01 5.00e-02 1.34e-01 ± 9.86e-04 ± 6.72e-03 1.44e-01 ± 9.94e-04 ± 7.20e-03

6.75e-01 5.00e-02 1.17e-01 ± 1.13e-03 ± 9.36e-03 1.28e-01 ± 1.12e-03 ± 1.03e-02

7.25e-01 5.00e-02 1.02e-01 ± 1.69e-03 ± 5.09e-03 1.05e-01 ± 1.63e-03 ± 5.24e-03

Table C.29
Invariant yields for K− and K+ at mid-rapidity in 0 - 20 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 9.62e-01 ± 1.43e-02 ± 2.89e-02 9.79e-01 ± 1.42e-02 ± 2.94e-02

2.75e-01 5.00e-02 7.00e-01 ± 7.78e-03 ± 7.00e-03 8.53e-01 ± 9.14e-03 ± 8.53e-03

3.25e-01 5.00e-02 6.07e-01 ± 5.91e-03 ± 1.21e-02 7.19e-01 ± 6.81e-03 ± 1.44e-02

3.75e-01 5.00e-02 5.39e-01 ± 4.94e-03 ± 4.85e-02 6.29e-01 ± 5.56e-03 ± 5.66e-02

4.25e-01 5.00e-02 4.62e-01 ± 4.68e-03 ± 6.47e-02 5.28e-01 ± 5.09e-03 ± 7.40e-02

4.75e-01 5.00e-02 3.97e-01 ± 4.54e-03 ± 4.37e-02 4.47e-01 ± 4.80e-03 ± 4.91e-02

5.25e-01 5.00e-02 3.47e-01 ± 3.88e-03 ± 2.43e-02 3.85e-01 ± 4.06e-03 ± 2.69e-02

5.75e-01 5.00e-02 3.05e-01 ± 3.44e-03 ± 2.74e-02 3.36e-01 ± 3.64e-03 ± 3.02e-02

6.25e-01 5.00e-02 2.54e-01 ± 3.09e-03 ± 1.27e-02 2.77e-01 ± 3.16e-03 ± 1.39e-02

6.75e-01 5.00e-02 2.18e-01 ± 3.47e-03 ± 1.75e-02 2.52e-01 ± 3.56e-03 ± 2.01e-02

7.25e-01 5.00e-02 1.88e-01 ± 5.02e-03 ± 9.39e-03 2.08e-01 ± 5.20e-03 ± 1.04e-02
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Table C.30
Invariant yields for K− and K+ at mid-rapidity in 20 - 40 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 7.22e-01 ± 1.21e-02 ± 2.17e-02 7.64e-01 ± 1.24e-02 ± 2.29e-02

2.75e-01 5.00e-02 5.83e-01 ± 7.22e-03 ± 5.83e-03 6.18e-01 ± 7.44e-03 ± 6.18e-03

3.25e-01 5.00e-02 4.80e-01 ± 5.25e-03 ± 9.61e-03 5.17e-01 ± 5.43e-03 ± 1.03e-02

3.75e-01 5.00e-02 4.07e-01 ± 4.19e-03 ± 3.66e-02 4.45e-01 ± 4.38e-03 ± 4.00e-02

4.25e-01 5.00e-02 3.42e-01 ± 3.87e-03 ± 4.79e-02 3.66e-01 ± 3.96e-03 ± 5.13e-02

4.75e-01 5.00e-02 2.75e-01 ± 3.65e-03 ± 3.03e-02 2.99e-01 ± 3.70e-03 ± 3.29e-02

5.25e-01 5.00e-02 2.42e-01 ± 3.09e-03 ± 1.70e-02 2.66e-01 ± 3.16e-03 ± 1.86e-02

5.75e-01 5.00e-02 2.13e-01 ± 2.75e-03 ± 1.92e-02 2.31e-01 ± 2.85e-03 ± 2.08e-02

6.25e-01 5.00e-02 1.71e-01 ± 2.42e-03 ± 8.55e-03 1.90e-01 ± 2.44e-03 ± 9.48e-03

6.75e-01 5.00e-02 1.56e-01 ± 2.71e-03 ± 1.25e-02 1.69e-01 ± 2.82e-03 ± 1.35e-02

7.25e-01 5.00e-02 1.30e-01 ± 3.98e-03 ± 6.50e-03 1.45e-01 ± 4.29e-03 ± 7.27e-03

Table C.31
Invariant yields for K− and K+ at per-rapidity in 40 - 100 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.25e-01 5.00e-02 3.21e-01 ± 4.88e-03 ± 9.62e-03 3.28e-01 ± 4.90e-03 ± 9.84e-03

2.75e-01 5.00e-02 2.48e-01 ± 2.78e-03 ± 2.48e-03 2.84e-01 ± 3.06e-03 ± 2.84e-03

3.25e-01 5.00e-02 2.07e-01 ± 2.05e-03 ± 4.13e-03 2.36e-01 ± 2.26e-03 ± 4.72e-03

3.75e-01 5.00e-02 1.83e-01 ± 1.70e-03 ± 1.65e-02 2.02e-01 ± 1.82e-03 ± 1.82e-02

4.25e-01 5.00e-02 1.54e-01 ± 1.59e-03 ± 2.15e-02 1.70e-01 ± 1.65e-03 ± 2.37e-02

4.75e-01 5.00e-02 1.20e-01 ± 1.48e-03 ± 1.32e-02 1.35e-01 ± 1.54e-03 ± 1.48e-02

5.25e-01 5.00e-02 1.07e-01 ± 1.27e-03 ± 7.50e-03 1.23e-01 ± 1.30e-03 ± 8.59e-03

5.75e-01 5.00e-02 9.53e-02 ± 1.15e-03 ± 8.57e-03 1.05e-01 ± 1.12e-03 ± 9.46e-03

6.25e-01 5.00e-02 7.64e-02 ± 9.92e-04 ± 3.82e-03 8.28e-02 ± 9.98e-04 ± 4.14e-03

6.75e-01 5.00e-02 6.76e-02 ± 1.15e-03 ± 5.41e-03 7.41e-02 ± 1.12e-03 ± 5.93e-03

7.25e-01 5.00e-02 6.18e-02 ± 1.81e-03 ± 3.09e-03 6.17e-02 ± 1.68e-03 ± 3.08e-03
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Table C.32
Invariant yields for p and p at mid-rapidity in Minimum Bias dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 1.65e-01 ± 1.05e-03 ± 1.65e-03 1.53e-01 ± 2.13e-03 ± 1.53e-03

4.25e-01 5.00e-02 1.45e-01 ± 8.75e-04 ± 1.45e-03 1.53e-01 ± 2.10e-03 ± 1.53e-03

4.75e-01 5.00e-02 1.32e-01 ± 7.73e-04 ± 1.32e-03 1.41e-01 ± 2.04e-03 ± 1.41e-03

5.25e-01 5.00e-02 1.17e-01 ± 6.92e-04 ± 1.17e-03 1.32e-01 ± 2.07e-03 ± 1.32e-03

5.75e-01 5.00e-02 1.06e-01 ± 6.31e-04 ± 1.06e-03 1.19e-01 ± 2.11e-03 ± 1.19e-03

6.25e-01 5.00e-02 9.43e-02 ± 5.67e-04 ± 1.89e-03 1.06e-01 ± 1.96e-03 ± 2.12e-03

6.75e-01 5.00e-02 8.41e-02 ± 5.17e-04 ± 1.68e-03 9.91e-02 ± 1.94e-03 ± 1.98e-03

7.25e-01 5.00e-02 7.47e-02 ± 4.71e-04 ± 7.47e-04 8.85e-02 ± 1.90e-03 ± 8.85e-04

7.75e-01 5.00e-02 6.57e-02 ± 4.29e-04 ± 1.97e-03 7.64e-02 ± 1.77e-03 ± 2.29e-03

8.25e-01 5.00e-02 5.88e-02 ± 3.99e-04 ± 2.94e-03 6.80e-02 ± 1.55e-03 ± 3.40e-03

8.75e-01 5.00e-02 5.45e-02 ± 3.75e-04 ± 2.72e-03 6.01e-02 ± 1.12e-03 ± 3.01e-03

9.25e-01 5.00e-02 4.77e-02 ± 3.35e-04 ± 9.55e-04 5.38e-02 ± 1.05e-03 ± 1.08e-03

9.75e-01 5.00e-02 4.08e-02 ± 3.05e-04 ± 8.16e-04 4.74e-02 ± 9.78e-04 ± 9.48e-04

1.03e+00 5.00e-02 3.50e-02 ± 2.91e-04 ± 2.45e-03 3.86e-02 ± 8.70e-04 ± 2.70e-03

1.08e+00 5.00e-02 3.12e-02 ± 4.27e-04 ± 9.37e-04 3.38e-02 ± 8.57e-04 ± 1.01e-03

Table C.33
Invariant yields for p and p at mid-rapidity in 0 - 20 % dAu colli-
sions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 2.94e-01 ± 3.18e-03 ± 2.94e-03 3.25e-01 ± 2.35e-03 ± 3.25e-03

4.25e-01 5.00e-02 2.56e-01 ± 2.64e-03 ± 2.56e-03 2.93e-01 ± 2.10e-03 ± 2.93e-03

4.75e-01 5.00e-02 2.35e-01 ± 2.34e-03 ± 2.35e-03 2.70e-01 ± 1.97e-03 ± 2.70e-03

5.25e-01 5.00e-02 2.11e-01 ± 2.10e-03 ± 2.11e-03 2.48e-01 ± 1.87e-03 ± 2.48e-03

5.75e-01 5.00e-02 1.92e-01 ± 1.92e-03 ± 1.92e-03 2.25e-01 ± 1.77e-03 ± 2.25e-03

6.25e-01 5.00e-02 1.72e-01 ± 1.73e-03 ± 3.44e-03 2.07e-01 ± 1.67e-03 ± 4.14e-03

6.75e-01 5.00e-02 1.55e-01 ± 1.59e-03 ± 3.09e-03 1.86e-01 ± 1.56e-03 ± 3.72e-03

7.25e-01 5.00e-02 1.40e-01 ± 1.46e-03 ± 1.40e-03 1.66e-01 ± 1.45e-03 ± 1.66e-03

7.75e-01 5.00e-02 1.23e-01 ± 1.32e-03 ± 3.70e-03 1.50e-01 ± 1.36e-03 ± 4.50e-03

8.25e-01 5.00e-02 1.11e-01 ± 1.25e-03 ± 5.55e-03 1.33e-01 ± 1.26e-03 ± 6.64e-03

8.75e-01 5.00e-02 9.86e-02 ± 1.14e-03 ± 4.93e-03 1.19e-01 ± 1.18e-03 ± 5.96e-03

9.25e-01 5.00e-02 8.55e-02 ± 1.03e-03 ± 1.71e-03 1.06e-01 ± 1.08e-03 ± 2.12e-03

9.75e-01 5.00e-02 7.68e-02 ± 9.66e-04 ± 1.54e-03 9.35e-02 ± 1.01e-03 ± 1.87e-03

1.03e+00 5.00e-02 6.67e-02 ± 8.73e-04 ± 4.67e-03 7.90e-02 ± 9.44e-04 ± 5.53e-03

1.08e+00 5.00e-02 5.99e-02 ± 8.72e-04 ± 1.80e-03 7.17e-02 ± 8.47e-04 ± 2.15e-03
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Table C.34
Invariant yields for p and p at mid-rapidity in 20 - 40 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 2.21e-01 ± 2.62e-03 ± 2.21e-03 2.40e-01 ± 1.90e-03 ± 2.40e-03

4.25e-01 5.00e-02 1.99e-01 ± 2.21e-03 ± 1.99e-03 2.18e-01 ± 1.72e-03 ± 2.18e-03

4.75e-01 5.00e-02 1.76e-01 ± 1.92e-03 ± 1.76e-03 2.00e-01 ± 1.60e-03 ± 2.00e-03

5.25e-01 5.00e-02 1.57e-01 ± 1.72e-03 ± 1.57e-03 1.85e-01 ± 1.53e-03 ± 1.85e-03

5.75e-01 5.00e-02 1.45e-01 ± 1.58e-03 ± 1.45e-03 1.67e-01 ± 1.43e-03 ± 1.67e-03

6.25e-01 5.00e-02 1.28e-01 ± 1.42e-03 ± 2.55e-03 1.49e-01 ± 1.34e-03 ± 2.98e-03

6.75e-01 5.00e-02 1.14e-01 ± 1.30e-03 ± 2.29e-03 1.33e-01 ± 1.25e-03 ± 2.66e-03

7.25e-01 5.00e-02 1.02e-01 ± 1.19e-03 ± 1.02e-03 1.19e-01 ± 1.17e-03 ± 1.19e-03

7.75e-01 5.00e-02 8.97e-02 ± 1.08e-03 ± 2.69e-03 1.07e-01 ± 1.09e-03 ± 3.21e-03

8.25e-01 5.00e-02 8.18e-02 ± 1.01e-03 ± 4.09e-03 9.42e-02 ± 1.01e-03 ± 4.71e-03

8.75e-01 5.00e-02 6.85e-02 ± 9.41e-04 ± 3.42e-03 8.27e-02 ± 9.50e-04 ± 4.13e-03

9.25e-01 5.00e-02 6.29e-02 ± 8.50e-04 ± 1.26e-03 7.15e-02 ± 8.22e-04 ± 1.43e-03

9.75e-01 5.00e-02 5.40e-02 ± 7.73e-04 ± 1.08e-03 6.73e-02 ± 8.09e-04 ± 1.35e-03

1.03e+00 5.00e-02 4.59e-02 ± 7.18e-04 ± 3.22e-03 5.62e-02 ± 7.76e-04 ± 3.94e-03

1.08e+00 5.00e-02 4.05e-02 ± 9.50e-04 ± 1.22e-03 4.97e-02 ± 1.04e-03 ± 1.49e-03

Table C.35
Invariant yields for p and p at per-rapidity in 40 - 100 % dAu
collisions at 200 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 1.03e-01 ± 1.08e-03 ± 1.03e-03 1.03e-01 ± 2.23e-03 ± 1.03e-03

4.25e-01 5.00e-02 9.08e-02 ± 9.05e-04 ± 9.08e-04 1.08e-01 ± 2.21e-03 ± 1.08e-03

4.75e-01 5.00e-02 8.23e-02 ± 8.01e-04 ± 8.23e-04 9.64e-02 ± 2.06e-03 ± 9.64e-04

5.25e-01 5.00e-02 7.29e-02 ± 7.14e-04 ± 7.29e-04 8.59e-02 ± 2.06e-03 ± 8.59e-04

5.75e-01 5.00e-02 6.47e-02 ± 6.44e-04 ± 6.47e-04 7.73e-02 ± 2.14e-03 ± 7.73e-04

6.25e-01 5.00e-02 5.69e-02 ± 5.78e-04 ± 1.14e-03 6.66e-02 ± 1.99e-03 ± 1.33e-03

6.75e-01 5.00e-02 4.99e-02 ± 5.20e-04 ± 9.97e-04 6.55e-02 ± 2.01e-03 ± 1.31e-03

7.25e-01 5.00e-02 4.33e-02 ± 4.69e-04 ± 4.33e-04 5.48e-02 ± 1.87e-03 ± 5.48e-04

7.75e-01 5.00e-02 3.79e-02 ± 4.27e-04 ± 1.14e-03 4.50e-02 ± 1.69e-03 ± 1.35e-03

8.25e-01 5.00e-02 3.30e-02 ± 3.89e-04 ± 1.65e-03 3.76e-02 ± 1.38e-03 ± 1.88e-03

8.75e-01 5.00e-02 2.89e-02 ± 3.51e-04 ± 1.44e-03 3.46e-02 ± 1.10e-03 ± 1.73e-03

9.25e-01 5.00e-02 2.50e-02 ± 3.21e-04 ± 5.00e-04 3.10e-02 ± 1.03e-03 ± 6.20e-04

9.75e-01 5.00e-02 2.10e-02 ± 2.89e-04 ± 4.21e-04 2.57e-02 ± 9.31e-04 ± 5.14e-04

1.03e+00 5.00e-02 1.83e-02 ± 2.80e-04 ± 1.28e-03 2.14e-02 ± 8.37e-04 ± 1.50e-03

1.08e+00 5.00e-02 1.62e-02 ± 3.09e-04 ± 4.85e-04 1.97e-02 ± 8.61e-04 ± 5.90e-04
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Table C.36
Invariant yields for π− and π+ at mid-rapidity in 0 - 5 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 3.00e+02 ± 3.04e-01 ± 6.01e+00 2.95e+02 ± 3.02e-01 ± 5.91e+00

2.75e-01 5.00e-02 2.33e+02 ± 2.48e-01 ± 4.66e+00 2.27e+02 ± 2.40e-01 ± 4.54e+00

3.25e-01 5.00e-02 1.80e+02 ± 1.79e-01 ± 3.59e+00 1.75e+02 ± 1.78e-01 ± 3.50e+00

3.75e-01 5.00e-02 1.39e+02 ± 1.42e-01 ± 1.39e+00 1.36e+02 ± 1.41e-01 ± 1.36e+00

4.25e-01 5.00e-02 1.07e+02 ± 1.17e-01 ± 1.07e+00 1.05e+02 ± 1.17e-01 ± 1.05e+00

4.75e-01 5.00e-02 8.32e+01 ± 9.68e-02 ± 8.32e-01 8.21e+01 ± 9.64e-02 ± 8.21e-01

5.25e-01 5.00e-02 6.47e+01 ± 8.12e-02 ± 6.47e-01 6.38e+01 ± 8.06e-02 ± 6.38e-01

5.75e-01 5.00e-02 5.05e+01 ± 6.89e-02 ± 1.01e+00 4.99e+01 ± 6.86e-02 ± 9.97e-01

6.25e-01 5.00e-02 3.96e+01 ± 5.99e-02 ± 7.91e-01 3.90e+01 ± 5.99e-02 ± 7.80e-01

6.75e-01 5.00e-02 3.14e+01 ± 5.65e-02 ± 9.41e-01 3.09e+01 ± 5.65e-02 ± 9.27e-01

Table C.37
Invariant yields for π− and π+ at mid-rapidity in 5 - 10 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 2.44e+02 ± 5.35e-01 ± 4.88e+00 2.39e+02 ± 5.50e-01 ± 4.77e+00

2.75e-01 5.00e-02 1.89e+02 ± 2.09e-01 ± 3.77e+00 1.85e+02 ± 2.09e-01 ± 3.71e+00

3.25e-01 5.00e-02 1.45e+02 ± 1.57e-01 ± 2.91e+00 1.44e+02 ± 1.58e-01 ± 2.88e+00

3.75e-01 5.00e-02 1.12e+02 ± 1.26e-01 ± 1.12e+00 1.12e+02 ± 1.27e-01 ± 1.12e+00

4.25e-01 5.00e-02 8.69e+01 ± 1.04e-01 ± 8.69e-01 8.69e+01 ± 1.05e-01 ± 8.69e-01

4.75e-01 5.00e-02 6.75e+01 ± 8.65e-02 ± 6.75e-01 6.74e+01 ± 8.69e-02 ± 6.74e-01

5.25e-01 5.00e-02 5.26e+01 ± 7.26e-02 ± 5.26e-01 5.24e+01 ± 7.29e-02 ± 5.24e-01

5.75e-01 5.00e-02 4.10e+01 ± 6.17e-02 ± 8.20e-01 4.09e+01 ± 6.19e-02 ± 8.18e-01

6.25e-01 5.00e-02 3.22e+01 ± 5.37e-02 ± 6.44e-01 3.21e+01 ± 5.39e-02 ± 6.41e-01

6.75e-01 5.00e-02 2.54e+01 ± 4.99e-02 ± 7.63e-01 2.53e+01 ± 5.05e-02 ± 7.59e-01
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Table C.38
Invariant yields for π− and π+ at mid-rapidity in 10 - 20 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 1.88e+02 ± 2.91e-01 ± 3.76e+00 1.87e+02 ± 2.88e-01 ± 3.73e+00

2.75e-01 5.00e-02 1.44e+02 ± 1.24e-01 ± 2.87e+00 1.41e+02 ± 1.24e-01 ± 2.83e+00

3.25e-01 5.00e-02 1.10e+02 ± 9.47e-02 ± 2.21e+00 1.08e+02 ± 9.39e-02 ± 2.16e+00

3.75e-01 5.00e-02 8.48e+01 ± 7.70e-02 ± 8.48e-01 8.36e+01 ± 7.55e-02 ± 8.36e-01

4.25e-01 5.00e-02 6.57e+01 ± 6.31e-02 ± 6.57e-01 6.49e+01 ± 6.29e-02 ± 6.49e-01

4.75e-01 5.00e-02 5.10e+01 ± 5.24e-02 ± 5.10e-01 5.04e+01 ± 5.21e-02 ± 5.04e-01

5.25e-01 5.00e-02 3.98e+01 ± 4.41e-02 ± 3.98e-01 3.92e+01 ± 4.38e-02 ± 3.92e-01

5.75e-01 5.00e-02 3.11e+01 ± 3.74e-02 ± 6.21e-01 3.07e+01 ± 3.73e-02 ± 6.14e-01

6.25e-01 5.00e-02 2.44e+01 ± 3.27e-02 ± 4.87e-01 2.41e+01 ± 3.26e-02 ± 4.82e-01

6.75e-01 5.00e-02 1.93e+01 ± 3.09e-02 ± 5.78e-01 1.90e+01 ± 3.02e-02 ± 5.71e-01

Table C.39
Invariant yields for π− and π+ at mid-rapidity in 20 - 30 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 1.31e+02 ± 2.03e-01 ± 2.62e+00 1.28e+02 ± 2.00e-01 ± 2.57e+00

2.75e-01 5.00e-02 1.00e+02 ± 9.90e-02 ± 2.00e+00 9.70e+01 ± 9.71e-02 ± 1.94e+00

3.25e-01 5.00e-02 7.68e+01 ± 7.65e-02 ± 1.54e+00 7.44e+01 ± 7.57e-02 ± 1.49e+00

3.75e-01 5.00e-02 5.91e+01 ± 6.28e-02 ± 5.91e-01 5.77e+01 ± 6.18e-02 ± 5.77e-01

4.25e-01 5.00e-02 4.58e+01 ± 5.17e-02 ± 4.58e-01 4.47e+01 ± 5.09e-02 ± 4.47e-01

4.75e-01 5.00e-02 3.54e+01 ± 4.30e-02 ± 3.54e-01 3.47e+01 ± 4.24e-02 ± 3.47e-01

5.25e-01 5.00e-02 2.76e+01 ± 3.61e-02 ± 2.76e-01 2.71e+01 ± 3.57e-02 ± 2.71e-01

5.75e-01 5.00e-02 2.15e+01 ± 3.06e-02 ± 4.30e-01 2.11e+01 ± 3.03e-02 ± 4.22e-01

6.25e-01 5.00e-02 1.68e+01 ± 2.64e-02 ± 3.36e-01 1.66e+01 ± 2.62e-02 ± 3.31e-01

6.75e-01 5.00e-02 1.33e+01 ± 2.42e-02 ± 3.98e-01 1.31e+01 ± 2.40e-02 ± 3.92e-01
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Table C.40
Invariant yields for π− and π+ at mid-rapidity in 30 - 40 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 8.87e+01 ± 1.51e-01 ± 1.77e+00 8.82e+01 ± 1.46e-01 ± 1.76e+00

2.75e-01 5.00e-02 6.71e+01 ± 7.83e-02 ± 1.34e+00 6.61e+01 ± 7.73e-02 ± 1.32e+00

3.25e-01 5.00e-02 5.14e+01 ± 6.11e-02 ± 1.03e+00 5.06e+01 ± 6.04e-02 ± 1.01e+00

3.75e-01 5.00e-02 3.95e+01 ± 4.98e-02 ± 3.95e-01 3.89e+01 ± 4.95e-02 ± 3.89e-01

4.25e-01 5.00e-02 3.04e+01 ± 4.13e-02 ± 3.04e-01 3.00e+01 ± 4.08e-02 ± 3.00e-01

4.75e-01 5.00e-02 2.36e+01 ± 3.42e-02 ± 2.36e-01 2.32e+01 ± 3.39e-02 ± 2.32e-01

5.25e-01 5.00e-02 1.82e+01 ± 2.87e-02 ± 1.82e-01 1.80e+01 ± 2.85e-02 ± 1.80e-01

5.75e-01 5.00e-02 1.42e+01 ± 2.43e-02 ± 2.84e-01 1.40e+01 ± 2.41e-02 ± 2.80e-01

6.25e-01 5.00e-02 1.11e+01 ± 2.10e-02 ± 2.22e-01 1.09e+01 ± 2.08e-02 ± 2.19e-01

6.75e-01 5.00e-02 8.78e+00 ± 1.90e-02 ± 2.63e-01 8.66e+00 ± 1.89e-02 ± 2.60e-01

Table C.41
Invariant yields for π− and π+ at mid-rapidity in 40 - 50 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 5.91e+01 ± 1.20e-01 ± 1.18e+00 5.89e+01 ± 1.16e-01 ± 1.18e+00

2.75e-01 5.00e-02 4.45e+01 ± 6.36e-02 ± 8.89e-01 4.37e+01 ± 6.31e-02 ± 8.74e-01

3.25e-01 5.00e-02 3.36e+01 ± 4.99e-02 ± 6.72e-01 3.31e+01 ± 4.96e-02 ± 6.62e-01

3.75e-01 5.00e-02 2.57e+01 ± 4.03e-02 ± 2.57e-01 2.53e+01 ± 4.02e-02 ± 2.53e-01

4.25e-01 5.00e-02 1.97e+01 ± 3.33e-02 ± 1.97e-01 1.95e+01 ± 3.31e-02 ± 1.95e-01

4.75e-01 5.00e-02 1.51e+01 ± 2.76e-02 ± 1.51e-01 1.50e+01 ± 2.75e-02 ± 1.50e-01

5.25e-01 5.00e-02 1.17e+01 ± 2.31e-02 ± 1.17e-01 1.15e+01 ± 2.30e-02 ± 1.15e-01

5.75e-01 5.00e-02 9.08e+00 ± 1.96e-02 ± 1.82e-01 8.94e+00 ± 1.94e-02 ± 1.79e-01

6.25e-01 5.00e-02 7.07e+00 ± 1.68e-02 ± 1.41e-01 6.99e+00 ± 1.67e-02 ± 1.40e-01

6.75e-01 5.00e-02 5.55e+00 ± 1.52e-02 ± 1.67e-01 5.45e+00 ± 1.50e-02 ± 1.64e-01
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Table C.42
Invariant yields for π− and π+ at mid-rapidity in 50 - 60 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 3.63e+01 ± 8.82e-02 ± 7.27e-01 3.66e+01 ± 9.09e-02 ± 7.31e-01

2.75e-01 5.00e-02 2.74e+01 ± 4.87e-02 ± 5.47e-01 2.71e+01 ± 4.86e-02 ± 5.43e-01

3.25e-01 5.00e-02 2.08e+01 ± 3.82e-02 ± 4.16e-01 2.04e+01 ± 3.81e-02 ± 4.09e-01

3.75e-01 5.00e-02 1.58e+01 ± 3.12e-02 ± 1.58e-01 1.56e+01 ± 3.10e-02 ± 1.56e-01

4.25e-01 5.00e-02 1.20e+01 ± 2.56e-02 ± 1.20e-01 1.19e+01 ± 2.55e-02 ± 1.19e-01

4.75e-01 5.00e-02 9.27e+00 ± 2.13e-02 ± 9.27e-02 9.13e+00 ± 2.11e-02 ± 9.13e-02

5.25e-01 5.00e-02 7.12e+00 ± 1.78e-02 ± 7.12e-02 7.03e+00 ± 1.77e-02 ± 7.03e-02

5.75e-01 5.00e-02 5.51e+00 ± 1.52e-02 ± 1.10e-01 5.45e+00 ± 1.49e-02 ± 1.09e-01

6.25e-01 5.00e-02 4.28e+00 ± 1.29e-02 ± 8.56e-02 4.21e+00 ± 1.27e-02 ± 8.41e-02

6.75e-01 5.00e-02 3.35e+00 ± 1.15e-02 ± 1.00e-01 3.26e+00 ± 1.13e-02 ± 9.79e-02

Table C.43
Invariant yields for π− and π+ at mid-rapidity in 60 - 70 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 2.02e+01 ± 6.22e-02 ± 4.05e-01 2.11e+01 ± 6.81e-02 ± 4.22e-01

2.75e-01 5.00e-02 1.53e+01 ± 3.57e-02 ± 3.06e-01 1.56e+01 ± 3.68e-02 ± 3.13e-01

3.25e-01 5.00e-02 1.15e+01 ± 2.80e-02 ± 2.30e-01 1.16e+01 ± 2.86e-02 ± 2.32e-01

3.75e-01 5.00e-02 8.69e+00 ± 2.28e-02 ± 8.69e-02 8.77e+00 ± 2.28e-02 ± 8.77e-02

4.25e-01 5.00e-02 6.59e+00 ± 1.88e-02 ± 6.59e-02 6.60e+00 ± 1.88e-02 ± 6.60e-02

4.75e-01 5.00e-02 5.02e+00 ± 1.54e-02 ± 5.02e-02 5.04e+00 ± 1.55e-02 ± 5.04e-02

5.25e-01 5.00e-02 3.85e+00 ± 1.29e-02 ± 3.85e-02 3.81e+00 ± 1.28e-02 ± 3.81e-02

5.75e-01 5.00e-02 2.96e+00 ± 1.08e-02 ± 5.93e-02 2.93e+00 ± 1.11e-02 ± 5.86e-02

6.25e-01 5.00e-02 2.28e+00 ± 9.23e-03 ± 4.56e-02 2.26e+00 ± 9.14e-03 ± 4.52e-02

6.75e-01 5.00e-02 1.77e+00 ± 8.22e-03 ± 5.32e-02 1.75e+00 ± 8.19e-03 ± 5.26e-02
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Table C.44
Invariant yields for π− and π+ at mid-rapidity in 70 - 80 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) π− π+

2.25e-01 5.00e-02 1.13e+01 ± 4.95e-02 ± 2.27e-01 1.07e+01 ± 4.75e-02 ± 2.14e-01

2.75e-01 5.00e-02 8.41e+00 ± 2.74e-02 ± 1.68e-01 7.79e+00 ± 2.54e-02 ± 1.56e-01

3.25e-01 5.00e-02 6.20e+00 ± 2.12e-02 ± 1.24e-01 5.81e+00 ± 2.00e-02 ± 1.16e-01

3.75e-01 5.00e-02 4.59e+00 ± 1.67e-02 ± 4.59e-02 4.32e+00 ± 1.60e-02 ± 4.32e-02

4.25e-01 5.00e-02 3.41e+00 ± 1.36e-02 ± 3.41e-02 3.27e+00 ± 1.31e-02 ± 3.27e-02

4.75e-01 5.00e-02 2.58e+00 ± 1.11e-02 ± 2.58e-02 2.44e+00 ± 1.06e-02 ± 2.44e-02

5.25e-01 5.00e-02 1.95e+00 ± 9.18e-03 ± 1.95e-02 1.86e+00 ± 8.83e-03 ± 1.86e-02

5.75e-01 5.00e-02 1.48e+00 ± 7.67e-03 ± 2.97e-02 1.43e+00 ± 7.42e-03 ± 2.85e-02

6.25e-01 5.00e-02 1.13e+00 ± 6.47e-03 ± 2.26e-02 1.08e+00 ± 6.39e-03 ± 2.15e-02

6.75e-01 5.00e-02 8.58e-01 ± 5.66e-03 ± 2.57e-02 8.34e-01 ± 5.56e-03 ± 2.50e-02

Table C.45
Invariant yields for K− and K+ at mid-rapidity in 0 - 5 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 1.89e+01 ± 9.39e-02 ± 1.89e-01 2.25e+01 ± 1.02e-01 ± 4.51e-01

3.25e-01 5.00e-02 1.70e+01 ± 7.31e-02 ± 3.40e-01 2.03e+01 ± 7.94e-02 ± 6.10e-01

3.75e-01 5.00e-02 1.61e+01 ± 6.26e-02 ± 1.45e+00 1.88e+01 ± 6.71e-02 ± 9.38e-01

4.25e-01 5.00e-02 1.44e+01 ± 6.00e-02 ± 2.02e+00 1.68e+01 ± 6.34e-02 ± 2.02e+00

4.75e-01 5.00e-02 1.27e+01 ± 6.50e-02 ± 1.40e+00 1.44e+01 ± 5.85e-02 ± 1.72e+00

5.25e-01 5.00e-02 1.13e+01 ± 5.05e-02 ± 7.91e-01 1.28e+01 ± 5.42e-02 ± 1.53e+00

5.75e-01 5.00e-02 1.04e+01 ± 4.85e-02 ± 9.38e-01 1.14e+01 ± 4.85e-02 ± 9.10e-01

6.25e-01 5.00e-02 9.36e+00 ± 5.41e-02 ± 4.68e-01 1.01e+01 ± 5.29e-02 ± 1.01e+00

6.75e-01 5.00e-02 7.73e+00 ± 6.78e-02 ± 6.19e-01 8.71e+00 ± 6.89e-02 ± 1.04e+00

7.25e-01 5.00e-02 5.94e+00 ± 9.13e-02 ± 2.97e-01 7.41e+00 ± 1.02e-01 ± 3.71e-01
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Table C.46
Invariant yields for K− and K+ at mid-rapidity in 5 - 10 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 1.67e+01 ± 9.08e-02 ± 3.34e-01 1.91e+01 ± 9.47e-02 ± 3.81e-01

3.25e-01 5.00e-02 1.46e+01 ± 6.88e-02 ± 4.38e-01 1.67e+01 ± 7.21e-02 ± 5.02e-01

3.75e-01 5.00e-02 1.35e+01 ± 5.77e-02 ± 6.74e-01 1.55e+01 ± 6.10e-02 ± 7.76e-01

4.25e-01 5.00e-02 1.20e+01 ± 5.40e-02 ± 1.44e+00 1.40e+01 ± 5.68e-02 ± 1.68e+00

4.75e-01 5.00e-02 1.06e+01 ± 5.20e-02 ± 1.28e+00 1.21e+01 ± 5.29e-02 ± 1.45e+00

5.25e-01 5.00e-02 8.86e+00 ± 4.48e-02 ± 1.06e+00 1.05e+01 ± 4.82e-02 ± 1.26e+00

5.75e-01 5.00e-02 8.03e+00 ± 4.19e-02 ± 6.43e-01 9.32e+00 ± 4.34e-02 ± 7.46e-01

6.25e-01 5.00e-02 7.21e+00 ± 4.78e-02 ± 7.21e-01 8.25e+00 ± 4.65e-02 ± 8.25e-01

6.75e-01 5.00e-02 6.36e+00 ± 6.28e-02 ± 7.63e-01 7.20e+00 ± 5.82e-02 ± 8.64e-01

7.25e-01 5.00e-02 5.43e+00 ± 9.21e-02 ± 2.72e-01 6.27e+00 ± 8.78e-02 ± 3.13e-01

Table C.47
Invariant yields for K− and K+ at mid-rapidity in 10 - 20 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 1.21e+01 ± 5.28e-02 ± 2.41e-01 1.43e+01 ± 5.69e-02 ± 2.85e-01

3.25e-01 5.00e-02 1.10e+01 ± 4.14e-02 ± 3.29e-01 1.25e+01 ± 4.33e-02 ± 3.75e-01

3.75e-01 5.00e-02 1.01e+01 ± 3.49e-02 ± 5.05e-01 1.15e+01 ± 3.66e-02 ± 5.77e-01

4.25e-01 5.00e-02 9.06e+00 ± 3.55e-02 ± 1.09e+00 1.04e+01 ± 3.66e-02 ± 1.25e+00

4.75e-01 5.00e-02 7.50e+00 ± 3.05e-02 ± 9.00e-01 8.97e+00 ± 3.18e-02 ± 1.08e+00

5.25e-01 5.00e-02 6.58e+00 ± 2.70e-02 ± 7.89e-01 7.86e+00 ± 2.87e-02 ± 9.43e-01

5.75e-01 5.00e-02 5.84e+00 ± 2.51e-02 ± 4.68e-01 6.95e+00 ± 2.57e-02 ± 5.56e-01

6.25e-01 5.00e-02 5.32e+00 ± 2.75e-02 ± 5.32e-01 6.09e+00 ± 2.65e-02 ± 6.09e-01

6.75e-01 5.00e-02 4.68e+00 ± 3.45e-02 ± 5.62e-01 5.33e+00 ± 3.25e-02 ± 6.39e-01

7.25e-01 5.00e-02 4.17e+00 ± 5.48e-02 ± 2.08e-01 4.55e+00 ± 4.77e-02 ± 2.28e-01
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Table C.48
Invariant yields for K− and K+ at mid-rapidity in 20 - 30 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 9.01e+00 ± 4.54e-02 ± 1.80e-01 1.03e+01 ± 4.79e-02 ± 2.06e-01

3.25e-01 5.00e-02 7.92e+00 ± 3.50e-02 ± 2.38e-01 8.86e+00 ± 3.60e-02 ± 2.66e-01

3.75e-01 5.00e-02 7.19e+00 ± 2.92e-02 ± 3.59e-01 8.02e+00 ± 3.00e-02 ± 4.01e-01

4.25e-01 5.00e-02 6.37e+00 ± 2.85e-02 ± 7.64e-01 7.19e+00 ± 2.96e-02 ± 8.63e-01

4.75e-01 5.00e-02 5.27e+00 ± 2.50e-02 ± 6.32e-01 6.09e+00 ± 2.55e-02 ± 7.30e-01

5.25e-01 5.00e-02 4.59e+00 ± 2.21e-02 ± 5.51e-01 5.32e+00 ± 2.29e-02 ± 6.38e-01

5.75e-01 5.00e-02 4.06e+00 ± 2.01e-02 ± 3.25e-01 4.69e+00 ± 2.05e-02 ± 3.75e-01

6.25e-01 5.00e-02 3.63e+00 ± 2.09e-02 ± 3.63e-01 4.13e+00 ± 2.04e-02 ± 4.13e-01

6.75e-01 5.00e-02 3.24e+00 ± 2.60e-02 ± 3.88e-01 3.61e+00 ± 2.42e-02 ± 4.33e-01

7.25e-01 5.00e-02 2.84e+00 ± 3.88e-02 ± 1.42e-01 3.12e+00 ± 3.64e-02 ± 1.56e-01

Table C.49
Invariant yields for K− and K+ at mid-rapidity in 30 - 40 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 5.88e+00 ± 3.54e-02 ± 1.18e-01 7.11e+00 ± 3.92e-02 ± 1.42e-01

3.25e-01 5.00e-02 5.19e+00 ± 2.73e-02 ± 1.56e-01 6.20e+00 ± 3.00e-02 ± 1.86e-01

3.75e-01 5.00e-02 4.72e+00 ± 2.29e-02 ± 2.36e-01 5.52e+00 ± 2.47e-02 ± 2.76e-01

4.25e-01 5.00e-02 4.20e+00 ± 2.21e-02 ± 5.04e-01 4.85e+00 ± 2.32e-02 ± 5.82e-01

4.75e-01 5.00e-02 3.49e+00 ± 1.97e-02 ± 4.19e-01 4.07e+00 ± 2.05e-02 ± 4.89e-01

5.25e-01 5.00e-02 3.04e+00 ± 1.73e-02 ± 3.65e-01 3.54e+00 ± 1.82e-02 ± 4.24e-01

5.75e-01 5.00e-02 2.68e+00 ± 1.56e-02 ± 2.15e-01 3.06e+00 ± 1.59e-02 ± 2.45e-01

6.25e-01 5.00e-02 2.37e+00 ± 1.59e-02 ± 2.37e-01 2.65e+00 ± 1.54e-02 ± 2.65e-01

6.75e-01 5.00e-02 2.09e+00 ± 1.89e-02 ± 2.51e-01 2.34e+00 ± 1.82e-02 ± 2.80e-01

7.25e-01 5.00e-02 1.80e+00 ± 2.76e-02 ± 8.98e-02 2.02e+00 ± 2.62e-02 ± 1.01e-01
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Table C.50
Invariant yields for K− and K+ at mid-rapidity in 40 - 50 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 4.07e+00 ± 3.05e-02 ± 8.15e-02 4.90e+00 ± 3.36e-02 ± 9.80e-02

3.25e-01 5.00e-02 3.48e+00 ± 2.27e-02 ± 1.05e-01 4.14e+00 ± 2.50e-02 ± 1.24e-01

3.75e-01 5.00e-02 3.08e+00 ± 1.87e-02 ± 1.54e-01 3.63e+00 ± 2.04e-02 ± 1.82e-01

4.25e-01 5.00e-02 2.71e+00 ± 1.77e-02 ± 3.25e-01 3.13e+00 ± 1.86e-02 ± 3.75e-01

4.75e-01 5.00e-02 2.24e+00 ± 1.59e-02 ± 2.69e-01 2.61e+00 ± 1.65e-02 ± 3.13e-01

5.25e-01 5.00e-02 1.92e+00 ± 1.39e-02 ± 2.30e-01 2.23e+00 ± 1.43e-02 ± 2.68e-01

5.75e-01 5.00e-02 1.70e+00 ± 1.25e-02 ± 1.36e-01 1.93e+00 ± 1.27e-02 ± 1.54e-01

6.25e-01 5.00e-02 1.48e+00 ± 1.23e-02 ± 1.48e-01 1.67e+00 ± 1.20e-02 ± 1.67e-01

6.75e-01 5.00e-02 1.30e+00 ± 1.44e-02 ± 1.56e-01 1.42e+00 ± 1.35e-02 ± 1.71e-01

7.25e-01 5.00e-02 1.16e+00 ± 2.17e-02 ± 5.82e-02 1.28e+00 ± 1.99e-02 ± 6.41e-02

Table C.51
Invariant yields for K− and K+ at mid-rapidity in 50 - 60 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 2.51e+00 ± 2.34e-02 ± 5.02e-02 2.63e+00 ± 2.27e-02 ± 5.26e-02

3.25e-01 5.00e-02 2.18e+00 ± 1.78e-02 ± 6.53e-02 2.32e+00 ± 1.75e-02 ± 6.95e-02

3.75e-01 5.00e-02 1.91e+00 ± 1.45e-02 ± 9.54e-02 2.09e+00 ± 1.47e-02 ± 1.05e-01

4.25e-01 5.00e-02 1.63e+00 ± 1.33e-02 ± 1.95e-01 1.81e+00 ± 1.37e-02 ± 2.17e-01

4.75e-01 5.00e-02 1.31e+00 ± 1.19e-02 ± 1.58e-01 1.53e+00 ± 1.31e-02 ± 1.84e-01

5.25e-01 5.00e-02 1.13e+00 ± 1.04e-02 ± 1.35e-01 1.31e+00 ± 1.09e-02 ± 1.57e-01

5.75e-01 5.00e-02 9.71e-01 ± 9.13e-03 ± 7.77e-02 1.14e+00 ± 9.54e-03 ± 9.14e-02

6.25e-01 5.00e-02 8.27e-01 ± 8.67e-03 ± 8.27e-02 9.80e-01 ± 9.01e-03 ± 9.80e-02

6.75e-01 5.00e-02 7.48e-01 ± 1.02e-02 ± 8.97e-02 8.52e-01 ± 1.00e-02 ± 1.02e-01

7.25e-01 5.00e-02 6.51e-01 ± 1.47e-02 ± 3.25e-02 7.26e-01 ± 1.45e-02 ± 3.63e-02
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Table C.52
Invariant yields for K− and K+ at mid-rapidity in 60 - 70 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 1.41e+00 ± 1.73e-02 ± 2.82e-02 1.54e+00 ± 1.77e-02 ± 3.09e-02

3.25e-01 5.00e-02 1.18e+00 ± 1.29e-02 ± 3.53e-02 1.31e+00 ± 1.33e-02 ± 3.94e-02

3.75e-01 5.00e-02 1.04e+00 ± 1.06e-02 ± 5.21e-02 1.14e+00 ± 1.09e-02 ± 5.70e-02

4.25e-01 5.00e-02 8.79e-01 ± 9.67e-03 ± 1.06e-01 9.92e-01 ± 9.93e-03 ± 1.19e-01

4.75e-01 5.00e-02 7.23e-01 ± 9.31e-03 ± 8.68e-02 8.04e-01 ± 8.80e-03 ± 9.65e-02

5.25e-01 5.00e-02 5.86e-01 ± 7.55e-03 ± 7.04e-02 6.89e-01 ± 7.68e-03 ± 8.27e-02

5.75e-01 5.00e-02 5.04e-01 ± 6.56e-03 ± 4.04e-02 5.78e-01 ± 6.69e-03 ± 4.63e-02

6.25e-01 5.00e-02 4.37e-01 ± 6.08e-03 ± 4.37e-02 4.97e-01 ± 6.15e-03 ± 4.97e-02

6.75e-01 5.00e-02 3.71e-01 ± 6.96e-03 ± 4.45e-02 4.13e-01 ± 6.66e-03 ± 4.96e-02

7.25e-01 5.00e-02 3.30e-01 ± 1.06e-02 ± 1.65e-02 3.78e-01 ± 1.03e-02 ± 1.89e-02

Table C.53
Invariant yields for K− and K+ at mid-rapidity in 70 - 80 %
Au − Au collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) K− K+

2.75e-01 5.00e-02 7.03e-01 ± 1.22e-02 ± 1.41e-02 7.29e-01 ± 1.20e-02 ± 1.46e-02

3.25e-01 5.00e-02 5.95e-01 ± 9.20e-03 ± 1.79e-02 5.82e-01 ± 8.50e-03 ± 1.75e-02

3.75e-01 5.00e-02 4.89e-01 ± 7.25e-03 ± 2.45e-02 5.07e-01 ± 6.97e-03 ± 2.53e-02

4.25e-01 5.00e-02 4.05e-01 ± 6.55e-03 ± 4.85e-02 4.40e-01 ± 6.40e-03 ± 5.28e-02

4.75e-01 5.00e-02 3.14e-01 ± 5.65e-03 ± 3.77e-02 3.58e-01 ± 5.70e-03 ± 4.30e-02

5.25e-01 5.00e-02 2.70e-01 ± 4.94e-03 ± 3.24e-02 3.20e-01 ± 5.13e-03 ± 3.84e-02

5.75e-01 5.00e-02 2.27e-01 ± 4.29e-03 ± 1.82e-02 2.52e-01 ± 4.35e-03 ± 2.01e-02

6.25e-01 5.00e-02 1.83e-01 ± 3.85e-03 ± 1.83e-02 2.13e-01 ± 3.97e-03 ± 2.13e-02

6.75e-01 5.00e-02 1.61e-01 ± 4.37e-03 ± 1.93e-02 1.86e-01 ± 4.50e-03 ± 2.24e-02

7.25e-01 5.00e-02 1.50e-01 ± 6.71e-03 ± 7.48e-03 1.64e-01 ± 6.05e-03 ± 8.18e-03
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Table C.54
Invariant yields for p and p at mid-rapidity in 0 - 5 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 3.16e+00 ± 2.12e-02 ± 3.16e-02 8.68e+00 ± 2.90e-02 ± 8.68e-02

4.25e-01 5.00e-02 3.04e+00 ± 1.92e-02 ± 3.04e-02 8.29e+00 ± 2.74e-02 ± 8.29e-02

4.75e-01 5.00e-02 2.98e+00 ± 1.80e-02 ± 2.98e-02 7.97e+00 ± 2.66e-02 ± 7.97e-02

5.25e-01 5.00e-02 2.92e+00 ± 1.71e-02 ± 2.92e-02 7.64e+00 ± 2.57e-02 ± 7.64e-02

5.75e-01 5.00e-02 2.87e+00 ± 1.64e-02 ± 2.87e-02 7.27e+00 ± 2.48e-02 ± 7.27e-02

6.25e-01 5.00e-02 2.75e+00 ± 1.55e-02 ± 5.51e-02 6.86e+00 ± 2.38e-02 ± 1.37e-01

6.75e-01 5.00e-02 2.64e+00 ± 1.48e-02 ± 5.27e-02 6.48e+00 ± 2.29e-02 ± 1.30e-01

7.25e-01 5.00e-02 2.51e+00 ± 1.41e-02 ± 5.01e-02 6.04e+00 ± 2.18e-02 ± 1.21e-01

7.75e-01 5.00e-02 2.34e+00 ± 1.34e-02 ± 4.67e-02 5.63e+00 ± 2.09e-02 ± 1.13e-01

8.25e-01 5.00e-02 2.19e+00 ± 1.25e-02 ± 4.39e-02 5.27e+00 ± 2.01e-02 ± 1.05e-01

8.75e-01 5.00e-02 2.08e+00 ± 1.23e-02 ± 6.24e-02 4.72e+00 ± 1.79e-02 ± 1.42e-01

9.25e-01 5.00e-02 1.90e+00 ± 1.21e-02 ± 5.69e-02 4.29e+00 ± 1.80e-02 ± 1.29e-01

9.75e-01 5.00e-02 1.78e+00 ± 3.65e-04 ± 5.35e-02 3.95e+00 ± 1.89e-02 ± 1.19e-01

1.02e+00 5.00e-02 1.62e+00 ± 1.59e-02 ± 4.85e-02 3.59e+00 ± 1.61e-02 ± 1.08e-01

1.07e+00 5.00e-02 1.51e+00 ± 1.19e-02 ± 6.02e-02 3.29e+00 ± 1.52e-02 ± 1.31e-01

1.12e+00 5.00e-02 1.34e+00 ± 1.45e-02 ± 5.38e-02 2.97e+00 ± 1.91e-02 ± 1.19e-01
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Table C.55
Invariant yields for p and p at mid-rapidity in 5 - 10 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 2.80e+00 ± 2.03e-02 ± 2.80e-02 7.70e+00 ± 2.83e-02 ± 7.70e-02

4.25e-01 5.00e-02 2.70e+00 ± 1.85e-02 ± 2.70e-02 7.30e+00 ± 2.66e-02 ± 7.30e-02

4.75e-01 5.00e-02 2.67e+00 ± 1.73e-02 ± 2.67e-02 7.05e+00 ± 2.57e-02 ± 7.05e-02

5.25e-01 5.00e-02 2.54e+00 ± 1.61e-02 ± 2.54e-02 6.73e+00 ± 2.48e-02 ± 6.73e-02

5.75e-01 5.00e-02 2.46e+00 ± 1.53e-02 ± 2.46e-02 6.41e+00 ± 2.39e-02 ± 6.41e-02

6.25e-01 5.00e-02 2.36e+00 ± 1.44e-02 ± 4.73e-02 6.00e+00 ± 2.28e-02 ± 1.20e-01

6.75e-01 5.00e-02 2.23e+00 ± 1.35e-02 ± 4.47e-02 5.60e+00 ± 2.17e-02 ± 1.12e-01

7.25e-01 5.00e-02 2.09e+00 ± 1.27e-02 ± 4.17e-02 5.24e+00 ± 2.06e-02 ± 1.05e-01

7.75e-01 5.00e-02 1.95e+00 ± 1.21e-02 ± 3.91e-02 4.83e+00 ± 1.95e-02 ± 9.67e-02

8.25e-01 5.00e-02 1.88e+00 ± 1.17e-02 ± 3.76e-02 4.48e+00 ± 1.86e-02 ± 8.95e-02

8.75e-01 5.00e-02 1.79e+00 ± 1.10e-02 ± 5.36e-02 3.94e+00 ± 1.69e-02 ± 1.18e-01

9.25e-01 5.00e-02 1.63e+00 ± 1.09e-02 ± 4.89e-02 3.61e+00 ± 1.63e-02 ± 1.08e-01

9.75e-01 5.00e-02 1.45e+00 ± 1.02e-02 ± 4.35e-02 3.31e+00 ± 1.62e-02 ± 9.93e-02

1.02e+00 5.00e-02 1.30e+00 ± 1.40e-02 ± 3.91e-02 2.99e+00 ± 1.97e-02 ± 8.97e-02

1.07e+00 5.00e-02 1.22e+00 ± 1.02e-02 ± 4.88e-02 2.71e+00 ± 1.27e-02 ± 1.08e-01

1.12e+00 5.00e-02 1.11e+00 ± 9.51e-05 ± 4.43e-02 2.44e+00 ± 1.58e-02 ± 9.74e-02
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Table C.56
Invariant yields for p and p at mid-rapidity in 10 - 20 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 2.30e+00 ± 1.31e-02 ± 2.30e-02 5.72e+00 ± 1.68e-02 ± 5.72e-02

4.25e-01 5.00e-02 2.24e+00 ± 1.19e-02 ± 2.24e-02 5.44e+00 ± 1.58e-02 ± 5.44e-02

4.75e-01 5.00e-02 2.17e+00 ± 1.11e-02 ± 2.17e-02 5.23e+00 ± 1.52e-02 ± 5.23e-02

5.25e-01 5.00e-02 2.13e+00 ± 1.05e-02 ± 2.13e-02 4.97e+00 ± 1.46e-02 ± 4.97e-02

5.75e-01 5.00e-02 2.03e+00 ± 9.81e-03 ± 2.03e-02 4.67e+00 ± 1.39e-02 ± 4.67e-02

6.25e-01 5.00e-02 1.91e+00 ± 9.15e-03 ± 3.82e-02 4.37e+00 ± 1.32e-02 ± 8.75e-02

6.75e-01 5.00e-02 1.82e+00 ± 8.63e-03 ± 3.64e-02 4.08e+00 ± 1.25e-02 ± 8.16e-02

7.25e-01 5.00e-02 1.68e+00 ± 8.05e-03 ± 3.37e-02 3.76e+00 ± 1.18e-02 ± 7.52e-02

7.75e-01 5.00e-02 1.56e+00 ± 7.57e-03 ± 3.12e-02 3.45e+00 ± 1.11e-02 ± 6.89e-02

8.25e-01 5.00e-02 1.47e+00 ± 7.26e-03 ± 2.95e-02 3.19e+00 ± 1.05e-02 ± 6.37e-02

8.75e-01 5.00e-02 1.41e+00 ± 6.62e-03 ± 4.24e-02 2.83e+00 ± 9.63e-03 ± 8.49e-02

9.25e-01 5.00e-02 1.26e+00 ± 5.96e-03 ± 3.77e-02 2.56e+00 ± 8.96e-03 ± 7.67e-02

9.75e-01 5.00e-02 1.15e+00 ± 6.43e-03 ± 3.46e-02 2.30e+00 ± 8.88e-03 ± 6.89e-02

1.02e+00 5.00e-02 1.01e+00 ± 7.84e-03 ± 3.03e-02 2.06e+00 ± 9.71e-03 ± 6.18e-02

1.07e+00 5.00e-02 9.49e-01 ± 6.09e-03 ± 3.80e-02 1.88e+00 ± 7.83e-03 ± 7.51e-02

1.12e+00 5.00e-02 8.73e-01 ± 8.40e-03 ± 3.49e-02 1.69e+00 ± 2.59e-04 ± 6.78e-02
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Table C.57
Invariant yields for p and p at mid-rapidity in 20 - 30 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 1.85e+00 ± 1.18e-02 ± 1.85e-02 3.90e+00 ± 1.33e-02 ± 3.90e-02

4.25e-01 5.00e-02 1.81e+00 ± 1.08e-02 ± 1.81e-02 3.68e+00 ± 1.25e-02 ± 3.68e-02

4.75e-01 5.00e-02 1.73e+00 ± 1.00e-02 ± 1.73e-02 3.54e+00 ± 1.20e-02 ± 3.54e-02

5.25e-01 5.00e-02 1.67e+00 ± 9.37e-03 ± 1.67e-02 3.40e+00 ± 1.16e-02 ± 3.40e-02

5.75e-01 5.00e-02 1.57e+00 ± 8.70e-03 ± 1.57e-02 3.19e+00 ± 1.11e-02 ± 3.19e-02

6.25e-01 5.00e-02 1.48e+00 ± 8.10e-03 ± 2.96e-02 2.98e+00 ± 1.05e-02 ± 5.95e-02

6.75e-01 5.00e-02 1.38e+00 ± 7.56e-03 ± 2.77e-02 2.75e+00 ± 9.91e-03 ± 5.51e-02

7.25e-01 5.00e-02 1.28e+00 ± 7.03e-03 ± 2.56e-02 2.55e+00 ± 9.36e-03 ± 5.10e-02

7.75e-01 5.00e-02 1.17e+00 ± 6.55e-03 ± 2.35e-02 2.33e+00 ± 8.77e-03 ± 4.66e-02

8.25e-01 5.00e-02 1.11e+00 ± 6.26e-03 ± 2.22e-02 1.98e+00 ± 8.07e-03 ± 3.96e-02

8.75e-01 5.00e-02 1.05e+00 ± 5.86e-03 ± 3.15e-02 1.80e+00 ± 7.68e-03 ± 5.39e-02

9.25e-01 5.00e-02 9.24e-01 ± 5.45e-03 ± 2.77e-02 1.63e+00 ± 7.16e-03 ± 4.90e-02

9.75e-01 5.00e-02 8.30e-01 ± 5.31e-03 ± 2.49e-02 1.48e+00 ± 6.96e-03 ± 4.44e-02

1.02e+00 5.00e-02 7.36e-01 ± 5.98e-03 ± 2.21e-02 1.36e+00 ± 6.23e-03 ± 4.07e-02

1.07e+00 5.00e-02 6.60e-01 ± 6.64e-03 ± 2.64e-02 1.20e+00 ± 6.50e-03 ± 4.82e-02

1.12e+00 5.00e-02 6.09e-01 ± 2.00e-04 ± 2.44e-02 1.10e+00 ± 1.40e-04 ± 4.39e-02
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Table C.58
Invariant yields for p and p at mid-rapidity in 30 - 40 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 1.41e+00 ± 1.02e-02 ± 1.41e-02 2.82e+00 ± 1.14e-02 ± 2.82e-02

4.25e-01 5.00e-02 1.34e+00 ± 9.27e-03 ± 1.34e-02 2.70e+00 ± 1.07e-02 ± 2.70e-02

4.75e-01 5.00e-02 1.31e+00 ± 8.65e-03 ± 1.31e-02 2.58e+00 ± 1.03e-02 ± 2.58e-02

5.25e-01 5.00e-02 1.25e+00 ± 8.03e-03 ± 1.25e-02 2.44e+00 ± 9.83e-03 ± 2.44e-02

5.75e-01 5.00e-02 1.17e+00 ± 7.46e-03 ± 1.17e-02 2.29e+00 ± 9.36e-03 ± 2.29e-02

6.25e-01 5.00e-02 1.08e+00 ± 6.87e-03 ± 2.16e-02 2.12e+00 ± 8.82e-03 ± 4.24e-02

6.75e-01 5.00e-02 1.01e+00 ± 6.40e-03 ± 2.02e-02 1.94e+00 ± 8.26e-03 ± 3.88e-02

7.25e-01 5.00e-02 9.14e-01 ± 5.89e-03 ± 1.83e-02 1.78e+00 ± 7.76e-03 ± 3.57e-02

7.75e-01 5.00e-02 8.47e-01 ± 5.50e-03 ± 1.69e-02 1.61e+00 ± 7.21e-03 ± 3.22e-02

8.25e-01 5.00e-02 7.74e-01 ± 5.16e-03 ± 1.55e-02 1.45e+00 ± 6.71e-03 ± 2.90e-02

8.75e-01 5.00e-02 7.33e-01 ± 5.04e-03 ± 2.20e-02 1.28e+00 ± 6.22e-03 ± 3.85e-02

9.25e-01 5.00e-02 6.47e-01 ± 4.46e-03 ± 1.94e-02 1.15e+00 ± 5.76e-03 ± 3.44e-02

9.75e-01 5.00e-02 5.68e-01 ± 4.28e-03 ± 1.70e-02 1.01e+00 ± 5.39e-03 ± 3.04e-02

1.02e+00 5.00e-02 5.06e-01 ± 4.26e-03 ± 1.52e-02 9.05e-01 ± 5.35e-03 ± 2.72e-02

1.07e+00 5.00e-02 4.44e-01 ± 5.15e-03 ± 1.77e-02 8.12e-01 ± 5.09e-03 ± 3.25e-02

1.12e+00 5.00e-02 4.00e-01 ± 3.70e-05 ± 1.60e-02 7.19e-01 ± 1.41e-04 ± 2.88e-02
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Table C.59
Invariant yields for p and p at mid-rapidity in 40 - 50 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 1.03e+00 ± 8.92e-03 ± 1.03e-02 2.00e+00 ± 9.86e-03 ± 2.00e-02

4.25e-01 5.00e-02 9.92e-01 ± 8.06e-03 ± 9.92e-03 1.88e+00 ± 9.14e-03 ± 1.88e-02

4.75e-01 5.00e-02 9.34e-01 ± 7.38e-03 ± 9.34e-03 1.77e+00 ± 8.67e-03 ± 1.77e-02

5.25e-01 5.00e-02 8.79e-01 ± 6.83e-03 ± 8.79e-03 1.64e+00 ± 8.20e-03 ± 1.64e-02

5.75e-01 5.00e-02 8.06e-01 ± 6.24e-03 ± 8.06e-03 1.53e+00 ± 7.75e-03 ± 1.53e-02

6.25e-01 5.00e-02 7.54e-01 ± 5.80e-03 ± 1.51e-02 1.41e+00 ± 7.29e-03 ± 2.82e-02

6.75e-01 5.00e-02 6.83e-01 ± 5.32e-03 ± 1.37e-02 1.28e+00 ± 6.81e-03 ± 2.57e-02

7.25e-01 5.00e-02 6.16e-01 ± 4.88e-03 ± 1.23e-02 1.16e+00 ± 6.32e-03 ± 2.31e-02

7.75e-01 5.00e-02 5.56e-01 ± 4.50e-03 ± 1.11e-02 1.04e+00 ± 5.85e-03 ± 2.07e-02

8.25e-01 5.00e-02 5.23e-01 ± 4.27e-03 ± 1.05e-02 9.33e-01 ± 5.44e-03 ± 1.87e-02

8.75e-01 5.00e-02 4.39e-01 ± 3.89e-03 ± 1.32e-02 8.03e-01 ± 4.98e-03 ± 2.41e-02

9.25e-01 5.00e-02 3.92e-01 ± 3.56e-03 ± 1.18e-02 7.12e-01 ± 4.47e-03 ± 2.14e-02

9.75e-01 5.00e-02 3.51e-01 ± 3.39e-03 ± 1.05e-02 6.28e-01 ± 4.32e-03 ± 1.88e-02

1.02e+00 5.00e-02 3.11e-01 ± 3.04e-03 ± 9.34e-03 5.52e-01 ± 4.11e-03 ± 1.66e-02

1.07e+00 5.00e-02 2.68e-01 ± 3.05e-03 ± 1.07e-02 4.88e-01 ± 3.83e-03 ± 1.95e-02

1.12e+00 5.00e-02 2.38e-01 ± 4.36e-03 ± 9.53e-03 4.27e-01 ± 4.57e-03 ± 1.71e-02



181

Table C.60
Invariant yields for p and p at mid-rapidity in 50 - 60 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 7.02e-01 ± 7.22e-03 ± 7.02e-03 1.29e+00 ± 7.85e-03 ± 1.29e-02

4.25e-01 5.00e-02 6.73e-01 ± 6.53e-03 ± 6.73e-03 1.21e+00 ± 7.28e-03 ± 1.21e-02

4.75e-01 5.00e-02 6.30e-01 ± 5.96e-03 ± 6.30e-03 1.15e+00 ± 6.91e-03 ± 1.15e-02

5.25e-01 5.00e-02 5.81e-01 ± 5.45e-03 ± 5.81e-03 1.06e+00 ± 6.51e-03 ± 1.06e-02

5.75e-01 5.00e-02 5.43e-01 ± 5.04e-03 ± 5.43e-03 9.70e-01 ± 6.10e-03 ± 9.70e-03

6.25e-01 5.00e-02 4.85e-01 ± 4.57e-03 ± 9.70e-03 8.97e-01 ± 5.74e-03 ± 1.79e-02

6.75e-01 5.00e-02 4.37e-01 ± 4.18e-03 ± 8.75e-03 7.87e-01 ± 5.25e-03 ± 1.57e-02

7.25e-01 5.00e-02 3.90e-01 ± 3.81e-03 ± 7.80e-03 7.05e-01 ± 4.86e-03 ± 1.41e-02

7.75e-01 5.00e-02 3.48e-01 ± 3.49e-03 ± 6.96e-03 6.36e-01 ± 4.50e-03 ± 1.27e-02

8.25e-01 5.00e-02 3.20e-01 ± 3.28e-03 ± 6.40e-03 5.55e-01 ± 4.11e-03 ± 1.11e-02

8.75e-01 5.00e-02 2.65e-01 ± 2.96e-03 ± 7.96e-03 4.66e-01 ± 3.73e-03 ± 1.40e-02

9.25e-01 5.00e-02 2.35e-01 ± 2.69e-03 ± 7.06e-03 4.12e-01 ± 3.41e-03 ± 1.24e-02

9.75e-01 5.00e-02 2.06e-01 ± 2.51e-03 ± 6.18e-03 3.63e-01 ± 3.17e-03 ± 1.09e-02

1.02e+00 5.00e-02 1.77e-01 ± 2.40e-03 ± 5.32e-03 3.16e-01 ± 2.91e-03 ± 9.48e-03

1.07e+00 5.00e-02 1.55e-01 ± 2.12e-03 ± 6.18e-03 2.74e-01 ± 3.26e-03 ± 1.10e-02

1.12e+00 5.00e-02 1.31e-01 ± 2.42e-03 ± 5.26e-03 2.41e-01 ± 3.09e-03 ± 9.63e-03
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Table C.61
Invariant yields for p and p at mid-rapidity in 60 - 70 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 4.35e-01 ± 5.63e-03 ± 4.35e-03 7.78e-01 ± 6.12e-03 ± 7.78e-03

4.25e-01 5.00e-02 3.96e-01 ± 4.93e-03 ± 3.96e-03 7.12e-01 ± 5.56e-03 ± 7.12e-03

4.75e-01 5.00e-02 3.78e-01 ± 4.54e-03 ± 3.78e-03 6.54e-01 ± 5.18e-03 ± 6.54e-03

5.25e-01 5.00e-02 3.46e-01 ± 4.14e-03 ± 3.46e-03 6.00e-01 ± 4.84e-03 ± 6.00e-03

5.75e-01 5.00e-02 3.13e-01 ± 3.76e-03 ± 3.13e-03 5.45e-01 ± 4.51e-03 ± 5.45e-03

6.25e-01 5.00e-02 2.78e-01 ± 3.40e-03 ± 5.56e-03 4.79e-01 ± 4.13e-03 ± 9.59e-03

6.75e-01 5.00e-02 2.48e-01 ± 3.09e-03 ± 4.96e-03 4.34e-01 ± 3.84e-03 ± 8.67e-03

7.25e-01 5.00e-02 2.24e-01 ± 2.84e-03 ± 4.49e-03 3.76e-01 ± 3.49e-03 ± 7.52e-03

7.75e-01 5.00e-02 1.87e-01 ± 2.52e-03 ± 3.75e-03 3.30e-01 ± 3.19e-03 ± 6.60e-03

8.25e-01 5.00e-02 1.69e-01 ± 2.33e-03 ± 3.37e-03 2.92e-01 ± 2.93e-03 ± 5.85e-03

8.75e-01 5.00e-02 1.55e-01 ± 2.15e-03 ± 4.65e-03 2.39e-01 ± 2.62e-03 ± 7.16e-03

9.25e-01 5.00e-02 1.29e-01 ± 1.93e-03 ± 3.88e-03 2.09e-01 ± 2.33e-03 ± 6.27e-03

9.75e-01 5.00e-02 1.11e-01 ± 1.78e-03 ± 3.33e-03 1.81e-01 ± 2.21e-03 ± 5.42e-03

1.02e+00 5.00e-02 9.77e-02 ± 1.76e-03 ± 2.93e-03 1.56e-01 ± 2.03e-03 ± 4.68e-03

1.07e+00 5.00e-02 8.21e-02 ± 1.61e-03 ± 3.28e-03 1.33e-01 ± 2.03e-03 ± 5.30e-03

1.12e+00 5.00e-02 6.94e-02 ± 2.00e-03 ± 2.78e-03 1.12e-01 ± 1.97e-03 ± 4.49e-03
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Table C.62
Invariant yields for p and p at mid-rapidity in 70 - 80 % Au − Au
collisions at 62.4 GeV.

pT (GeV/c) ∆pT (GeV/c) p p

3.75e-01 5.00e-02 2.27e-01 ± 3.87e-03 ± 2.27e-03 3.93e-01 ± 4.24e-03 ± 3.93e-03

4.25e-01 5.00e-02 2.04e-01 ± 3.41e-03 ± 2.04e-03 3.51e-01 ± 3.84e-03 ± 3.51e-03

4.75e-01 5.00e-02 1.96e-01 ± 3.17e-03 ± 1.96e-03 3.25e-01 ± 3.58e-03 ± 3.25e-03

5.25e-01 5.00e-02 1.72e-01 ± 2.85e-03 ± 1.72e-03 2.92e-01 ± 3.31e-03 ± 2.92e-03

5.75e-01 5.00e-02 1.51e-01 ± 2.56e-03 ± 1.51e-03 2.61e-01 ± 3.05e-03 ± 2.61e-03

6.25e-01 5.00e-02 1.36e-01 ± 2.34e-03 ± 2.73e-03 2.27e-01 ± 2.78e-03 ± 4.54e-03

6.75e-01 5.00e-02 1.19e-01 ± 2.11e-03 ± 2.39e-03 1.96e-01 ± 2.52e-03 ± 3.92e-03

7.25e-01 5.00e-02 1.01e-01 ± 1.88e-03 ± 2.02e-03 1.76e-01 ± 2.33e-03 ± 3.52e-03

7.75e-01 5.00e-02 8.58e-02 ± 1.68e-03 ± 1.72e-03 1.46e-01 ± 2.07e-03 ± 2.93e-03

8.25e-01 5.00e-02 7.87e-02 ± 1.57e-03 ± 1.57e-03 1.28e-01 ± 1.89e-03 ± 2.56e-03

8.75e-01 5.00e-02 6.86e-02 ± 1.42e-03 ± 2.06e-03 1.05e-01 ± 1.70e-03 ± 3.15e-03

9.25e-01 5.00e-02 5.64e-02 ± 1.20e-03 ± 1.69e-03 8.94e-02 ± 1.52e-03 ± 2.68e-03

9.75e-01 5.00e-02 4.81e-02 ± 1.14e-03 ± 1.44e-03 7.31e-02 ± 1.33e-03 ± 2.19e-03

1.02e+00 5.00e-02 4.07e-02 ± 1.03e-03 ± 1.22e-03 6.66e-02 ± 1.28e-03 ± 2.00e-03

1.07e+00 5.00e-02 3.58e-02 ± 9.68e-04 ± 1.43e-03 5.55e-02 ± 1.20e-03 ± 2.22e-03

1.12e+00 5.00e-02 3.04e-02 ± 1.00e-03 ± 1.22e-03 4.57e-02 ± 1.21e-03 ± 1.83e-03
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D. Comparison of dca and Nfit distributions from real data

and from embedding
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Figure D.1. Comparison of dca from real data and embedding in 200 GeV minimum bias pp collisions.
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Figure D.2. Comparison of Nfit from real data and embedding in 200 GeV minimum bias pp collisions.
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Figure D.3. Comparison of dca from real data and embedding in 200 GeV minimum bias dAu collisions.
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Figure D.4. Comparison of Nfit from real data and embedding in 200 GeV minimum bias dAu collisions.
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Figure D.5. Comparison of dca from real data and embedding in 62.4 GeV central (0-5%) Au-Au collisions.
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Figure D.6. Comparison of dca from real data and embedding in 62.4 GeV peripheral (70-80%) Au-Au collisions.
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Figure D.7. Comparison of Nfit from real data and embedding in 62.4 GeV central (0-5%) Au-Au collisions.
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Figure D.8. Comparison of Nfit from real data and embedding in 62.4 GeV peripheral (70-80%) Au-Au collisions.
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